Displaying publications 81 - 100 of 481 in total

Abstract:
Sort:
  1. Chou KW, Norli I, Anees A
    Bioresour Technol, 2010 Nov;101(22):8616-22.
    PMID: 20638277 DOI: 10.1016/j.biortech.2010.06.101
    In this study, palm oil mill effluent (POME) was solubilized by batch thermo-alkaline pre-treatments. A three-factor central composite design (CCD) was applied to identify the optimum COD solubilization condition. The individual and interactive effects of three factors, temperature, NaOH concentration and reaction time, on solubilization of POME were evaluated by employing response surface methodology (RSM). The experimental results showed that temperature, NaOH concentration and reaction time all had an individual significant effect on the solubilization of POME. But these three factors were independent, or there was insignificant interaction on the response. The maximum COD solubilization of 82.63% was estimated under the optimum condition at 32.5 degrees C, 8.83g/L of NaOH and 41.23h reaction time. The confirmation experiment of the predicted optimum conditions verified that the RSM with the central composite design was useful for optimizing the solubilization of POME.
  2. Wan Nawawi WM, Jamal P, Alam MZ
    Bioresour Technol, 2010 Dec;101(23):9241-7.
    PMID: 20674345 DOI: 10.1016/j.biortech.2010.07.024
    This paper introduces sludge palm oil (SPO) as a novel substrate for biosurfactant production by liquid state fermentation. Potential strains of microorganism were isolated from various hydrocarbon-based sources at palm oil mill and screened for biosurfactant production with the help of drop collapse method and surface tension activity. Out of 22 isolates of microorganism, the strain S02 showed the highest bacterial growth with a surface tension of 36.2 mN/m and was therefore, selected as a potential biosurfactant producing microorganism. Plackett-Burman experimental design was employed to determine the important nutritional requirement for biosurfactant production by the selected strain under controlled conditions. Six out of 11 factors of the production medium were found to significantly affect the biosurfactant production. K(2)HPO(4) had a direct proportional correlation with the biosurfactant production while sucrose, glucose, FeSO(4), MgSO(4), and NaNO(3) showed inversely proportional relationship with biosurfactant production in the selected experimental range.
  3. Sim JH, Kamaruddin AH, Bhatia S
    Bioresour Technol, 2010 Dec;101(23):8948-54.
    PMID: 20675129 DOI: 10.1016/j.biortech.2010.07.039
    The objective of this research is to investigate the potential of transesterification of crude palm oil (CPO) to biodiesel at 30 degrees C. The mass transfer limitations problem crucial at 30 degrees C due to the viscosity of CPO has been addressed. The process parameters that are closely related to mass transfer effects like enzyme loading, agitation speed and reaction time were optimized. An optimum methanol to oil substrate molar ratio at 6.5:1 was observed and maintained throughout the experiments. The optimum operating condition for the transesterification process was found at 6.67 wt% of enzyme loading and at 150 rpm of agitation speed. The corresponding initial reaction and FAME yield obtained at 6 h were 89.29% FAME yield/hr and 85.01%, respectively. The 85% FAME yield obtained at 30 degrees C operation of CPO transesterification shows that the process is potentially feasible for the biodiesel synthesis.
  4. Zahed MA, Aziz HA, Isa MH, Mohajeri L, Mohajeri S
    Bioresour Technol, 2010 Dec;101(24):9455-60.
    PMID: 20705460 DOI: 10.1016/j.biortech.2010.07.077
    To determine the influence of nutrients on the rate of biodegradation, a five-level, three-factor central composite design (CCD) was employed for bioremediation of seawater artificially contaminated with crude oil. Removal of total petroleum hydrocarbons (TPH) was the dependent variable. Samples were extracted and analyzed according to US-EPA protocols. A significant (R(2)=0.9645, P<0.0001) quadratic polynomial mathematical model was generated. Removal from samples not subjected to optimization and removal by natural attenuation were 53.3% and 22.6%, respectively. Numerical optimization was carried out based on desirability functions for maximum TPH removal. For an initial crude oil concentration of 1g/L supplemented with 190.21 mg/L nitrogen and 12.71 mg/L phosphorus, the Design-Expert software predicted 60.9% hydrocarbon removal; 58.6% removal was observed in a 28-day experiment.
  5. Yunus R, Salleh SF, Abdullah N, Biak DR
    Bioresour Technol, 2010 Dec;101(24):9792-6.
    PMID: 20719502 DOI: 10.1016/j.biortech.2010.07.074
    Various pre-treatment techniques change the physical and chemical structure of the lignocellulosic biomass and improve hydrolysis rates. The effect of ultrasonic pre-treatment on oil palm empty fruit bunch (OPEFB) fibre prior to acid hydrolysis has been evaluated. The main objective of this study was to determine if ultrasonic pre-treatment could function as a pre-treatment method for the acid hydrolysis of OPEFB fibre at a low temperature and pressure. Hydrolysis at a low temperature was studied using 2% sulphuric acid; 1:25 solid liquid ratio and 100 degrees C operating temperature. A maximum xylose yield of 58% was achieved when the OPEFB fibre was ultrasonicated at 90% amplitude for 45min. In the absence of ultrasonic pre-treatment only 22% of xylose was obtained. However, no substantial increase of xylose formation was observed for acid hydrolysis at higher temperatures of 120 and 140 degrees C on ultrasonicated OPEFB fibre. The samples were then analysed using a scanning electron microscope (SEM) to describe the morphological changes of the OPEFB fibre. The SEM observations show interesting morphological changes within the OPEFB fibre for different acid hydrolysis conditions.
  6. Mazaheri H, Lee KT, Bhatia S, Mohamed AR
    Bioresour Technol, 2010 Dec;101(23):9335-41.
    PMID: 20656481 DOI: 10.1016/j.biortech.2010.07.004
    Thermal decomposition of oil palm fruit press fiber (FPF) into a liquid product (LP) was achieved using subcritical water treatment in the presence of sodium hydroxide in a high pressure batch reactor. This study uses experimental design and process optimisation tools to maximise the LP yield using response surface methodology (RSM) with central composite rotatable design (CCRD). The independent variables were temperature, residence time, particle size, specimen loading, and additive loading. The mathematical model that was developed fit the experimental results well for all of the response variables that were studied. The optimal conditions were found to be a temperature of 551 K, a residence time of 40 min, a particle size of 710-1000 microm, a specimen loading of 5 g, and a additive loading of 9 wt.% to achieve a LP yield of 76.16%.
  7. Sabiha-Hanim S, Noor MA, Rosma A
    Bioresour Technol, 2011 Jan;102(2):1234-9.
    PMID: 20797853 DOI: 10.1016/j.biortech.2010.08.017
    Oil palm (Elaeis guineensis Jacq.) is one of the most important commercial crops for the production of palm oil, which generates 10.88 tons of oil palm fronds per hectare of plantation as a by-product. In this study, oil palm frond fibres were subjected to an autohydrolysis treatment using an autoclave, operated at 121 °C for 20-80 min, to facilitate the separation of hemicelluloses. The hemicellulose-rich solution (autohydrolysate) was subjected to further hydrolysis with 4-16 U of mixed Trichoderma viride endo-(1,4)-β-xylanases (EC 3.2.1.8) per 100 mg of autohydrolysate. Autoclaving of palm fronds at 121°C for 60 min (a severity factor of 2.40) recovered 75% of the solid residue, containing 57.9% cellulose and 18% Klason lignin, and an autohydrolysate containing 14.94% hemicellulose, with a fractionation efficiency of 49.20%. Subsequent enzymatic hydrolysis of the autohydrolysate with 8 U of endoxylanase at 40 °C for 24 h produced a solution containing 17.5% xylooligosaccharides and 25.6% xylose. The results clearly indicate the potential utilization of oil palm frond, an abundantly available lignocellulosic biomass for the production of xylose and xylooligosaccharides which can serve as functional food ingredients.
  8. Juan JC, Kartika DA, Wu TY, Hin TY
    Bioresour Technol, 2011 Jan;102(2):452-60.
    PMID: 21094045 DOI: 10.1016/j.biortech.2010.09.093
    Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock.
  9. Baroutian S, Aroua MK, Raman AA, Sulaiman NM
    Bioresour Technol, 2011 Jan;102(2):1095-102.
    PMID: 20888219 DOI: 10.1016/j.biortech.2010.08.076
    In this study, a novel continuous reactor has been developed to produce high quality methyl esters (biodiesel) from palm oil. A microporous TiO2/Al2O3 membrane was packed with potassium hydroxide catalyst supported on palm shell activated carbon. The central composite design (CCD) of response surface methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst amount and cross flow circulation velocity on the production of biodiesel in the packed bed membrane reactor. The highest conversion of palm oil to biodiesel in the reactor was obtained at 70 °C employing 157.04 g catalyst per unit volume of the reactor and 0.21 cm/s cross flow circulation velocity. The physical and chemical properties of the produced biodiesel were determined and compared with the standard specifications. High quality palm oil biodiesel was produced by combination of heterogeneous alkali transesterification and separation processes in the packed bed membrane reactor.
  10. Tham YJ, Latif PA, Abdullah AM, Shamala-Devi A, Taufiq-Yap YH
    Bioresour Technol, 2011 Jan;102(2):724-8.
    PMID: 20884200 DOI: 10.1016/j.biortech.2010.08.068
    In the effort to find alternative low cost adsorbent for volatile organic vapors has prompted this research in assessing the effectiveness of activated carbon produced from durian shell in removing toluene vapors. Durian shells were impregnated with different concentrations of H3PO4 followed by carbonization at 500 °C for 20 min under nitrogen atmosphere. The prepared durian shell activated carbon (DSAC) was characterized for its physical and chemical properties. The removal efficiency of toluene by DSAC was performed using different toluene concentrations. Results showed that the highest BET surface area of the produced DSAC was 1404 m2/g. Highest removal efficiency of toluene vapors was achieved by using DSAC impregnated with 30% of acid concentration heated at 500 °C for 20 min heating duration. However, there is insignificant difference between removal efficiency of toluene by DSAC and different toluene concentrations. The toluene adsorption by DSAC was better fitted into Freundlich model.
  11. Lahijani P, Zainal ZA
    Bioresour Technol, 2011 Jan;102(2):2068-76.
    PMID: 20980143 DOI: 10.1016/j.biortech.2010.09.101
    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed.
  12. Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Feb;102(4):3819-26.
    PMID: 21183335 DOI: 10.1016/j.biortech.2010.11.100
    Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle.
  13. Wan Z, Hameed BH
    Bioresour Technol, 2011 Feb;102(3):2659-64.
    PMID: 21109428 DOI: 10.1016/j.biortech.2010.10.119
    In this study, methyl ester (ME) was produced by transesterification of palm oil (CPO) (cooking grade) using activated carbon supported calcium oxide as a solid base catalyst (CaO/AC). Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effect of reaction time, molar ratio of methanol to oil, reaction temperature and catalyst amount on the transesterification process. The optimum condition for CPO transesterification to methyl ester was obtained at 5.5 wt.% catalyst amount, 190°C temperature, 15:1 methanol to oil molar ratio and 1 h 21 min reaction time. At the optimum condition, the ME content was 80.98%, which is well within the predicted value of the model. Catalyst regeneration studies indicate that the catalyst performance is sustained after two cycles.
  14. Salema AA, Ani FN
    Bioresour Technol, 2011 Feb;102(3):3388-95.
    PMID: 20970995 DOI: 10.1016/j.biortech.2010.09.115
    The purpose of this paper was to carry out microwave induced pyrolysis of oil palm biomass (shell and fibers) with the help of char as microwave absorber (MA). Rapid heating and yield of microwave pyrolysis products such as bio-oil, char, and gas was found to depend on the ratio of biomass to microwave absorber. Temperature profiles revealed the heating characteristics of the biomass materials which can rapidly heat-up to high temperature within seconds in presence of MA. Some characterization of pyrolysis products was also presented. The advantage of this technique includes substantial reduction in consumption of energy, time and cost in order to produce bio-oil from biomass materials. Large biomass particle size can be used directly in microwave heating, thus saving grinding as well as moisture removal cost. A synergistic effect was found in using MA with oil palm biomass.
  15. Fan SP, Zakaria S, Chia CH, Jamaluddin F, Nabihah S, Liew TK, et al.
    Bioresour Technol, 2011 Feb;102(3):3521-6.
    PMID: 21123058 DOI: 10.1016/j.biortech.2010.11.046
    Solvolysis of oil palm empty fruit bunches (EFB) fibres using different solvents (acetone, ethylene glycol (EG), ethanol, water and toluene) were carried out using an autoclave at 275°C for 60 min. The solvent efficiency in term of conversion yield was found to be: EG>water>ethanol>acetone>toluene. The liquid products and residue obtained were analyzed using Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass selectivity. The obtained results showed that the chemical properties of the oil product were significantly affected by the type of solvent used for the solvolysis process. The higher heating value (HHV) of oil products obtained using ethanol is ∼29.42 MJ/kg, which is the highest among the oil products produced using different solvents. Water, ethanol and toluene yield major phenolic compounds. While EG favors the formation of alcohol compounds and acetone yields ketone and aldehyde compounds.
  16. Abd Rahman NF, Basri M, Rahman MB, Rahman RN, Salleh AB
    Bioresour Technol, 2011 Feb;102(3):2168-76.
    PMID: 21050749 DOI: 10.1016/j.biortech.2010.10.034
    Engkabang fat esters were produced via alcoholysis reaction between Engkabang fat and oleyl alcohol, catalyzed by Lipozyme RM IM. The reaction was carried out in a 500 ml Stirred tank reactor using heptane and hexane as solvents. Response surface methodology (RSM) based on a four-factor-five-level Central composite design (CCD) was applied to evaluate the effects of synthesis parameters, namely temperature, substrate molar ratio (oleyl alcohol: Engkabang fat), enzyme amount and impeller speed. The optimum yields of 96.2% and 91.4% were obtained for heptane and hexane at the optimum temperature of 53.9°C, impeller speeds of 309.5 and 309.0 rpm, enzyme amounts of 4.82 and 5.65 g and substrate molar ratios of 2.94 and 3.39:1, respectively. The actual yields obtained compared well with the predicted values of 100.0% and 91.5%, respectively. Meanwhile, the properties of the esters show that they are suitable to be used as ingredient for cosmetic applications.
  17. Salim YS, Abdullah AA, Nasri CS, Ibrahim MN
    Bioresour Technol, 2011 Feb;102(3):3626-8.
    PMID: 21115240 DOI: 10.1016/j.biortech.2010.11.020
    Poly(3-hydroxybutyrate-co-38 mol%-3-hydroxyvalerate) [P(3HB-co-38mol%-3HV)] was produced by Cupriavidus sp. USMAA2-4 in the presence of oleic acid and 1-pentanol. Due to enormous production of empty fruit bunch (EFB) in the oil palm plantation and high production cost of P(3HB-co-3HV), oil palm EFB fibers were used for biocomposites preparation. In this study, maleic anhydride (MA) and benzoyl peroxide (DBPO) were used to improve the miscibility between P(3HB-co-3HV) and EFB fibers. Introduction of MA into P(3HB-co-3HV) backbone reduced the molecular weight and improved the thermal stability of P(3HB-co-3HV). Thermal stability of P(3HB-co-3HV)/EFB composites was shown to be comparable to that of commercial packaging product. Composites with 35% EFB fibers content have the highest tensile strength compared to 30% and 40%. P(3HB-co-3HV)/EFB blends showed less chemicals leached compared to commercial packaging.
  18. Damayanti A, Ujang Z, Salim MR
    Bioresour Technol, 2011 Mar;102(6):4341-6.
    PMID: 21251818 DOI: 10.1016/j.biortech.2010.12.061
    The main objective of this work was to determine the effectiveness of various biofouling reducers (BFRs) to operational condition in hybrid membrane bioreactor (MBR) of palm oil mill effluent (POME). A series of tests involving three bench scale (100 L) hybrid MBR were operated at sludge retention times (SRTs) of 30 days with biofouling reducer (BFR). Three different biofouling reducers (BFRs) were powdered actived carbon (PAC), zeolite (Ze), and Moringa oleifera (Mo) with doses of 4, 8 and 12 g L(-1) respectively were used. Short-term filtration trials and critical flux tests were conducted. Results showed that, all BFRs successfully removed soluble microbial products (SMP), for PAC, Ze, and Mo at 58%, 42%, and 48%, respectively. At their optimum dosages, PAC provided above 70% reductions and 85% in fouling rates during the short-term filtration and critical flux tests.
  19. Yee KF, Lee KT, Ceccato R, Abdullah AZ
    Bioresour Technol, 2011 Mar;102(5):4285-9.
    PMID: 21232947 DOI: 10.1016/j.biortech.2010.12.048
    This study reports the conversion of Jatrophacurcas L. oil to biodiesel catalyzed by sulfated zirconia loaded on alumina catalyst using response surface methodology (RSM), specifically to study the effect of interaction between process variables on the yield of biodiesel. The transesterification process variables studied were reaction temperature, reaction duration, molar ratio of methanol to oil and catalyst loading. Results from this study revealed that individual as well as interaction between variables significantly affect the yield of biodiesel. With this information, it was found that 4h of reaction at 150°C, methanol to oil molar ratio of 9.88 mol/mol and 7.61 wt.% for catalyst loading gave an optimum biodiesel yield of 90.32 wt.%. The fuel properties of Jatropha biodiesel were characterized and it indeed met the specification for biodiesel according to ASTM D6751.
  20. Harun MY, Dayang Radiah AB, Zainal Abidin Z, Yunus R
    Bioresour Technol, 2011 Apr;102(8):5193-9.
    PMID: 21333529 DOI: 10.1016/j.biortech.2011.02.001
    Effects of different physical pretreatments on water hyacinth for dilute acid hydrolysis process (121 ± 3 °C, 5% H(2)SO(4), 60 min) were comparatively investigated. Untreated sample had produced 24.69 mg sugar/g dry matter. Steaming (121 ± 3 °C) and boiling (100 ± 3 °C) for 30 min had provided 35.9% and 52.4% higher sugar yield than untreated sample, respectively. The highest sugar yield (132.96 mg sugar/g dry matter) in ultrasonication was obtained at 20 min irradiation using 100% power. The highest sugar production (155.13 mg sugar/g dry matter) was obtained from pulverized samples. Hydrolysis time was reduced when using samples pretreated by drying, mechanical comminution and ultrasonication. In most methods, prolonging the pretreatment period was ineffective and led to sugar degradations. Morphology inspection and thermal analysis had provided evidences of structure disruption that led to higher sugar recovery in hydrolysis process.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links