Displaying publications 81 - 100 of 481 in total

Abstract:
Sort:
  1. Sun C, Song G, Pan Z, Tu M, Kharaziha M, Zhang X, et al.
    Bioresour Technol, 2023 Jan;368:128356.
    PMID: 36414144 DOI: 10.1016/j.biortech.2022.128356
    The valorization of organosolv pretreatment (OP) is a required approach to the industrialization of the current enzyme-mediated lignocellulosic biorefinery. Recent literature has demonstrated that the solvolysis happening in the OP can modify the soluble components into value-added active compounds, namely organosolv modified lignin (OML) and organosolv modified sugars (OMSs), in addition to protecting them against excessive degradation. Among them, the OML is coincidental with the "lignin-first" strategy that should render a highly reactive lignin enriched with β-O-4 linkages and less condensed structure by organosolv grafting, which is desirable for the transformation into phenolic compounds. The OMSs are valuable glycosidic compounds mainly synthesized by trans-glycosylation, which can find potential applications in cosmetics, foods, and healthcare. Therefore, a state-of-the-art OP holds a big promise of lowering the process cost by the valorization of these active compounds. Recent advances in organosolv modified components are reviewed, and perspectives are made for addressing future challenges.
  2. Katayon S, Noor MJ, Asma M, Ghani LA, Thamer AM, Azni I, et al.
    Bioresour Technol, 2006 Sep;97(13):1455-60.
    PMID: 16213137
    Moringa oleifera is a plant whose seeds have coagulation properties for treating water and wastewater. In this study the coagulation efficiency of Moringa oleifera kept in different storage conditions were studied. The Moringa oleifera seeds were stored at different conditions and durations; open container and closed container at room temperature (28 degrees C) and refrigerator (3 degrees C) for durations of 1, 3 and 5 months. Comparison between turbidity removal efficiency of Moringa oleifera kept in refrigerator and room temperature revealed that there was no significant difference between them. The Moringa oleifera kept in refrigerator and room temperature for one month showed higher turbidity removal efficiency, compared to those kept for 3 and 5 months, at both containers. The coagulation efficiency of Moringa oleifera was found to be dependent on initial turbidity of water samples. Highest turbidity removals were obtained for water with very high initial turbidity. In summary coagulation efficiency of Moringa oleifera was found independent of storage temperature and container, however coagulation efficiency of Moringa oleifera decreased as storage duration increased. In addition, Moringa oleifera can be used as a potential coagulant especially for very high turbidity water.
  3. Hashim R, How LS, Kumar RN, Sulaiman O
    Bioresour Technol, 2005 Nov;96(16):1826-31.
    PMID: 16051090
    The flame retardancy of medium density fiberboard (MDF) made from mixture of rubberwood fibers and recycled old corrugated containers was studied. Aluminum trihydroxide (ATH) was used as a fire retardant additive and mixed with the fibers to manufacture experimental MDF panels using wet process. Phenol formaldehyde (PF) resin in liquid, 2% based on oven dry weight of fibers, was used along with 0%, 10%, 15% and 20% of ATH. The flame retardant test was done using the limiting oxygen index (LOI) test. The other properties investigated include internal bond strength, thickness swelling and water absorption. The results showed that ATH loading increased as the LOI of MDF increased. This demonstrated that ATH could improved the fire retardant property of MDF at sufficient loading. An increase in concentration of ATH showed an increase in the IB values of MDF made without resin. MDF panels made without resin showed a progressive increase in internal bond as the composition of recycled old corrugated containers fiber increased. Addition of resin improved internal bond strength and reduced thickness swelling, and water absorption. Thickness swelling of panel increased as the composition of recycled old corrugated containers fiber increased. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) showed that there is indication of ATH and resin filling the void space in between fibers.
  4. Baroutian S, Aroua MK, Raman AA, Sulaiman NM
    Bioresour Technol, 2011 Jan;102(2):1095-102.
    PMID: 20888219 DOI: 10.1016/j.biortech.2010.08.076
    In this study, a novel continuous reactor has been developed to produce high quality methyl esters (biodiesel) from palm oil. A microporous TiO2/Al2O3 membrane was packed with potassium hydroxide catalyst supported on palm shell activated carbon. The central composite design (CCD) of response surface methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst amount and cross flow circulation velocity on the production of biodiesel in the packed bed membrane reactor. The highest conversion of palm oil to biodiesel in the reactor was obtained at 70 °C employing 157.04 g catalyst per unit volume of the reactor and 0.21 cm/s cross flow circulation velocity. The physical and chemical properties of the produced biodiesel were determined and compared with the standard specifications. High quality palm oil biodiesel was produced by combination of heterogeneous alkali transesterification and separation processes in the packed bed membrane reactor.
  5. Issabayeva G, Aroua MK, Sulaiman NM
    Bioresour Technol, 2006 Dec;97(18):2350-5.
    PMID: 16321520
    The performance of a commercially available palm shell based activated carbon to remove lead ions from aqueous solutions by adsorption was evaluated. The adsorption experiments were carried out at pH 3.0 and 5.0. The effect of malonic and boric acid presence on the adsorption of lead ions was also studied. Palm shell activated carbon showed high adsorption capacity for lead ions, especially at pH 5 with an ultimate uptake of 95.2mg/g. This high uptake showed palm shell activated carbon as amongst the best adsorbents for lead ions. Boric acid presence did not affect significantly lead uptake, whereas malonic acid decreased it. The diffuse layer surface complexation model was applied to predict the extent of adsorption. The model prediction was found to be in concordance with the experimental values.
  6. Damayanti A, Ujang Z, Salim MR, Olsson G, Sulaiman AZ
    Bioresour Technol, 2010 Jan;101(1):144-9.
    PMID: 19734044 DOI: 10.1016/j.biortech.2009.08.034
    Activated sludge models (ASMs) have been widely used as a basis for further model development in wastewater treatment processes. Values for parameters to be used are vital for the accuracy of the modeling approach. A continuous stirred tank reactor (CSTR), as open respirometer with continuous flow for 20 h is used in ASMs. The dissolved oxygen (DO) profile for 11 days was monitored. It was found the mass transfer coefficient K(La) is 0.3 h(-1) during lag and start feed phase and 0.01 h(-1) during stop feed phase, while the heterotrophic yield coefficient Y(H) is 0.44. Some of the chemical oxygen demand (COD) fractionations of palm oil mill effluent (POME) using respirometric test in ASM models are S(s) 50 mg/L, S(I) 16,600 mg/L, X(S) 25,550 mg/L, and X(I) 2,800 mg/L. The comparison of experimental and ASM1 from OUR concentration is found to fit well.
  7. Talib AT, Mokhtar MN, Baharuddin AS, Sulaiman A
    Bioresour Technol, 2014 Oct;169:428-38.
    PMID: 25079208 DOI: 10.1016/j.biortech.2014.07.033
    The effect of different aeration rates on the organic matter (OM) degradation during the active phase of oil palm empty fruit bunch (EFB)-rabbit manure co-composting process under constant forced-aeration system has been studied. Four different aeration rates, 0.13 L min(-1) kg(DM)(-1),0.26 L min(-1) kg(DM)(-1),0.49 L min(-1) kg(DM)(-1) and 0.74 L min(-1) kg(DM)(-1) were applied. 0.26 L min(-1) kg(DM)(-1) provided enough oxygen level (10%) for the rest of composting period, showing 40.5% of OM reduction that is better than other aeration rates. A dynamic mathematical model describing OM degradation, based on the ratio between OM content and initial OM content with correction functions of moisture content, free air space, oxygen and temperature has been proposed.
  8. Tijjani Usman IM, Ho YC, Baloo L, Lam MK, Sujarwo W
    Bioresour Technol, 2022 Oct 27;366:128167.
    PMID: 36341858 DOI: 10.1016/j.biortech.2022.128167
    This review investigates the development of bioproducts from biomass and their contribution towards net zero carbon emissions. The promising future of biomasses conversion techniques to produce bioproducts was reviewed. The advances in anaerobic digestion as a biochemical conversion technique have been critically studied and contribute towards carbon emissions mitigation. Different applications of microalgae biomass towards carbon neutrality were comprehensively discussed, and several research findings have been tabulated in this review. The carbon footprints of wastewater treatment plants were studied, and bioenergy utilisation from sludge production was shown to mitigate carbon footprints. The carbon-sinking capability of microalgae has also been outlined. Furthermore, integrated conversion processes have shown to enhance bioproducts generation yield and quality. The anaerobic digestion/pyrolysis integrated process was promising, and potential substrates have been suggested for future research. Lastly, challenges and future perspectives of bioproducts were outlined for a contribution towards meeting carbon neutrality.
  9. Oh WD, Lim PE, Seng CE, Sujari AN
    Bioresour Technol, 2012 Jun;114:179-87.
    PMID: 22503192 DOI: 10.1016/j.biortech.2012.03.065
    A kinetic model incorporating adsorption, desorption and biodegradation processes was developed to describe the bioregeneration of granular activated carbon (GAC) loaded with 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, in simultaneous adsorption and biodegradation processes. The model was numerically solved and the results showed that the kinetic model was well-fitted (R(2)>0.83) to the experimental data at different GAC dosages and at various initial 4-CP and 2,4-DCP concentrations. The rate of bioregeneration in simultaneous adsorption and biodegradation processes was influenced by the ratio of initial chlorophenol concentration to GAC dosage. Enhancement in the rate of bioregeneration was achieved by using the lowest ratio under either one of the following experimental conditions: (1) increasing initial chlorophenol concentration at constant GAC dosage and (2) increasing GAC dosage at constant initial chlorophenol concentration. It was found that the rate enhancement was more pronounced under the second experimental condition.
  10. Lim JW, Seng CE, Lim PE, Ng SL, Sujari AN
    Bioresour Technol, 2011 Nov;102(21):9876-83.
    PMID: 21890353 DOI: 10.1016/j.biortech.2011.08.014
    The performance of moving bed sequencing batch reactors (MBSBRs) added with 8 % (v/v) of polyurethane (PU) foam cubes as carrier media in nitrogen removal was investigated in treating low COD/N wastewater. The results indicate that MBSBR with 8-mL cubes achieved the highest total nitrogen (TN) removal efficiency of 37% during the aeration period, followed by 31%, 24% and 19 % for MBSBRs with 27-, 64- and 125-mL cubes, respectively. The increased TN removal in MBSBRs was mainly due to simultaneous nitrification and denitrification (SND) process which was verified by batch studies. The relatively lower TN removal in MBSBR with larger PU foam cubes was attributed to the observation that larger PU foam cubes were not fully attached by biomass. Higher concentrations of 8-mL PU foam cubes in batch reactors yielded higher TN removal.
  11. Oh WD, Lim PE, Seng CE, Sujari AN
    Bioresour Technol, 2011 Oct;102(20):9497-502.
    PMID: 21871793 DOI: 10.1016/j.biortech.2011.07.107
    The objectives of this study are to obtain the time courses of the amount of chlorophenol adsorbed onto granular activated carbon (GAC) in the simultaneous adsorption and biodegradation processes involving 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, and to quantify the bioregeneration efficiency of GAC loaded with 4-CP and 2,4-DCP by direct measurement of the amount of chlorophenol adsorbed onto GAC. Under abiotic and biotic conditions, the time courses of the amount of chlorophenol adsorbed onto GAC at various GAC dosages for the initial 4-CP and 2,4-DCP concentrations below and above the biomass acclimated concentrations of 300 and 150 mg/L, respectively, were determined. The results show that the highest bioregeneration efficiency was achieved provided that the initial adsorbate concentration was lower than the acclimated concentration. When the initial adsorbate concentration was higher than the acclimated concentration, the highest bioregeneration efficiency was achieved if excess adsorbent was used.
  12. Li J, Shimizu K, Akasako H, Lu Z, Akiyama S, Goto M, et al.
    Bioresour Technol, 2015 Jan;175:463-72.
    PMID: 25459856 DOI: 10.1016/j.biortech.2014.10.047
    This study revealed the biotic and abiotic parameters driving the variations in microcystins (MCs) biodegradability of a practical biological treatment facility (BTF). Results showed that similar trends of seasonal variation were seen for microcystin-LR (MCLR) biodegradability of biofilms on the BTF and indigenous MCLR-degrader population, where both peaks co-occurred in October, following the peaks of natural MCLR concentration and water temperature observed in August. The lag period might be required for accumulation of MCLR-degraders and MCLR-degrading enzyme activity. The MCLR-degrader population was correlated to temperature, MCLR and chlorophyll-a concentration in water where the biofilms submerged, indicating that these abiotic and biotic parameters exerted direct and/or indirect influences on seasonal variation in MCLR-biodegradability. In comparison, no effect of other co-existing MCs on biodegradation of one MC was observed. However, proliferation of MC-degraders along biodegradation processes positively responded to total amount of MCs, suggesting that multiple MCs contributed additively to MC-degrader proliferation.
  13. Li B, Huang W, Zhang C, Feng S, Zhang Z, Lei Z, et al.
    Bioresour Technol, 2015;187:214-220.
    PMID: 25855527 DOI: 10.1016/j.biortech.2015.03.118
    The influence of TiO2 nanoparticles (TiO2-NPs) (10-50mg/L) on aerobic granulation of algal-bacterial symbiosis system was investigated by using two identical sequencing batch reactors (SBRs). Although little adverse effect was observed on their nitritation efficiency (98-100% in both reactors), algal-bacterial granules in the control SBR (Rc) gradually lost stability mainly brought about by algae growth. TiO2-NPs addition to RT was found to enhance the granulation process achieving stable and compact algal-bacterial granules with remarkably improved nitratation thus little nitrite accumulation in RT when influent TiO2-NPs⩾30mg/L. Despite almost similar organics and phosphorus removals obtained in both reactors, the stably high nitratation efficiency in addition to much stable granular structure in RT suggests that TiO2-NPs addition might be a promising remedy for the long-term operation of algal-bacterial granular system, most probably attributable to the stimulated excretion of extracellular polymeric substances and less filamentous TM7.
  14. Wong YM, Brigham CJ, Rha C, Sinskey AJ, Sudesh K
    Bioresour Technol, 2012 Oct;121:320-7.
    PMID: 22858502 DOI: 10.1016/j.biortech.2012.07.015
    The potential of plant oils as sole carbon sources for production of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction using the recombinant Cupriavidus necator strain Re2160/pCB113 has been investigated. Various types and concentrations of plant oils were evaluated for efficient conversion of P(3HB-co-3HHx) copolymer. Crude palm kernel oil (CPKO) at a concentration of 2.5 g/L was found to be most suitable for production of copolymer with a 3HHx content of approximately 70 mol%. The time profile of these cells was also examined in order to study the trend of 3HHx monomer incorporation, PHA production and PHA synthase activity. (1)H NMR and (13)C NMR analyses confirmed the presence of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction, in which monomers were not randomly distributed. The results of various characterization analyses revealed that the copolymers containing a high 3HHx monomer fraction demonstrated soft and flexible mechanical properties.
  15. Lau NS, Chee JY, Tsuge T, Sudesh K
    Bioresour Technol, 2010 Oct;101(20):7916-23.
    PMID: 20541932 DOI: 10.1016/j.biortech.2010.05.049
    We attempted to synthesize a polyhydroxyalkanoate (PHA) containing newly reported 3-hydroxy-4-methylvalerate (3H4MV) monomer by using wild type Burkholderia sp. USM (JCM15050) and its transformed strain harboring the PHA synthase gene of Aeromonas caviae (phaCAc). The introduction of 3H4MV as a second monomer will improve the material properties of 3HB-based polymers. To promote the accumulation of PHA containing 3H4MV monomer, isocaproic acid was provided as co-carbon source. Approximately 1mol% of 3H4MV was detected in wild type Burkholderia sp. cultures when they were fed glucose or fructose together with isocaproic acid. Thus, the wild type strain can synthesize the 3H4MV monomer. High 3H4MV fractions, of about 40mol%, were obtained when the transformed strain was cultivated on glucose or fructose together with isocaproic acid. In addition, the ability of the transformed strain to mobilize accumulated PHA containing 3H4MV monomer was demonstrated in this study. This is the first report on mobilization of the 3H4MV monomer.
  16. Lee WH, Loo CY, Nomura CT, Sudesh K
    Bioresour Technol, 2008 Oct;99(15):6844-51.
    PMID: 18325764 DOI: 10.1016/j.biortech.2008.01.051
    The combination of plant oils and 3-hydroxyvalerate (3HV) precursors were evaluated for the biosynthesis of polyhydroxyalkanoate (PHA) copolymers containing 3HV monomers by Cupriavidus necator H16. Among various mixtures of plant oils and 3HV-precursors, the mixture of palm kernel oil and sodium propionate was suitable for the biosynthesis of high concentration of PHA (6.8gL(-1)) containing 7mol% of 3HV. The 3HV monomer composition can be regulated in the range of 0-23mol% by changing culture parameters such as the initial pH, and the nitrogen source and its concentration. PHA copolymers with high weight-average molecular weights (Mw) ranging from 1,400,000 to 3,100,000Da were successfully produced from mixtures of plant oils and 3HV-precursors. The mixture of plant oils and sodium propionate resulted in PHA copolymers with higher M(w) compared to the mixture of plant oils and sodium valerate. DSC analysis on the PHA containing 3HV monomers showed the presence of two distinct melting temperature (Tm), which indicated that the PHA synthesized might be a blend of P(3HB) and P(3HB-co-3HV). Sodium propionate appears to be the better precursor of 3HV than sodium valerate.
  17. Cheah WY, Ling TC, Juan JC, Lee DJ, Chang JS, Show PL
    Bioresour Technol, 2016 Sep;215:346-56.
    PMID: 27090405 DOI: 10.1016/j.biortech.2016.04.019
    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility.
  18. Khoo KS, Chew KW, Ooi CW, Ong HC, Ling TC, Show PL
    Bioresour Technol, 2019 Oct;290:121794.
    PMID: 31319214 DOI: 10.1016/j.biortech.2019.121794
    This work aimed to study the application of liquid biphasic flotation (LBF) for the efficient and rapid recovery of astaxanthin from H. pluvialis microalgae. The performance of LBF for the extraction of astaxanthin was studied comprehensively under different operating conditions, including types and concentrations of food-grade alcohol and salt, volume ratio, addition of neutral salt, flotation period, and mass of dried H. pluvialis biomass powder. The maximum recovery, extraction efficiency and partition coefficient of astaxanthin obtained from the optimum LBF system were 95.11 ± 1.35%, 99.84 ± 0.05% and 385.16 ± 3.87, respectively. A scaled-up LBF system was also performed, demonstrating the feasibility of extracting natural astaxanthin from microalgae at a larger scale. This exploration of LBF system opens a promising avenue to the extraction of astaxanthin at lower cost and shorter processing time.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links