Displaying publications 81 - 100 of 1004 in total

Abstract:
Sort:
  1. Lee SW, Xue K
    Environ Sci Pollut Res Int, 2021 Nov;28(44):63346-63358.
    PMID: 34224094 DOI: 10.1007/s11356-021-15235-0
    Sustainable urban development has been a popular subject in urban studies and related disciplines. Owing to the challenges faced by cities worldwide to accommodate the growing urban populations, it is becoming ever more important for innovative research on sustainable urban development to be performed to help cities achieve sustainability. This study develops and tests an integrated approach to sustainable city assessment, which is a combination of importance-performance analysis (IPA) and modified analytic hierarchy process (AHP). Questionnaires designed following the IPA concept were distributed to residents of three cities. The importance scores from the collected data were factorized and the factors' relative scores were then calculated using a formula developed in this study to represent pairwise comparisons. The derived criteria weights were applied to the performance scores to evaluate the cities' relative overall sustainability performance. This approach replaces the AHP's 1-9 scale with the IPA's importance rating scale, which is a Likert scale, in the questionnaire. Based on the findings, implications and future research suggestions were provided.
  2. Umar HA, Khanan MFA, Shiru MS, Ahmad A, Rahman MZA, Din AHM
    Environ Sci Pollut Res Int, 2023 Nov;30(55):116848-116859.
    PMID: 36633746 DOI: 10.1007/s11356-023-25144-z
    This study investigates hydrocarbon pollution in the Ahoada community of the Niger Delta region of Nigeria. The study uses a geographic information system (GIS) for mapping oil spill hotspots in the region. The resistivity method was used to delineate the extent of hydrocarbon pollution to a depth of 19.7 m in the Ahoada area of the region. Three categories of soil samples, impacted soil (IMS), remediated soil (RS), and control soil (CS), were collected and analyzed for the presence of BTEX, PAH, TPH, TOC, and TOG. The concentrations of the samples from the IMS and RS were compared to that of the CS to determine the extent of pollution. The GIS mapping shows that the most polluted areas in the Niger Delta Region are Rivers, Bayelsa, and Delta states. Results of the geophysical images revealed contaminants' presence to depths beyond 20 m at some locations in the study area. The highest depth of contaminant travel was at Ukperede. Soil samples' analysis showed that the range of concentrations of TPH in IMS at Oshie was 17.27-58.36 mg/kg; RS was 11.73-50.78 mg/kg which were higher than the concentrations of 0.68 mg/kg in the CS. PAHs are more prevalent in Ukperede, ranging from 54.56 to 77.54 mg/kg. BTEX concentrations ranged from 0.02 to 0.38 mg/kg for IMP and 0.01-2.7 mg/kg for RS against a CS value of 0.01 mg/kg. The study revealed that there are characteristically high resistivity values in the samples which were corroborated by the findings from the resistivity survey. TOC was found to be higher in the IMS and RS than in the CS, demonstrating that a significant quantity of the hydrocarbon has undergone appreciable decomposition.
  3. Ramakrishnan S, Hishan SS, Nabi AA, Arshad Z, Kanjanapathy M, Zaman K, et al.
    Environ Sci Pollut Res Int, 2016 Jul;23(14):14567-79.
    PMID: 27068914 DOI: 10.1007/s11356-016-6647-8
    This study aims to determine an interactive environmental model for economic growth that would be supported by the "sustainability principles" across the globe. The study examines the relationship between environmental pollutants (i.e., carbon dioxide emission, sulfur dioxide emission, mono-nitrogen oxide, and nitrous oxide emission); population growth; energy use; trade openness; per capita food production; and it's resulting impact on the real per capita GDP and sectoral growth (i.e., share of agriculture, industry, and services in GDP) in a panel of 34 high-income OECD, high-income non-OECD, and Europe and Central Asian countries, for the period of 1995-2014. The results of the panel fixed effect regression show that per capita GDP are influenced by sulfur dioxide emission, population growth, and per capita food production variability, while energy and trade openness significantly increases per capita income of the region. The results of the panel Seemingly Unrelated Regression (SUR) show that carbon dioxide emission significantly decreases the share of agriculture and industry in GDP, while it further supports the share of services sector to GDP. Both the sulfur dioxide and mono-nitrogen oxide emission decreases the share of services in GDP; nitrous oxide decreases the share of industry in GDP; while mono-nitrogen oxide supports the industrial activities. The following key growth-specific results has been obtained from the panel SUR estimation, i.e., (i) Both the food production per capita and trade openness significantly associated with the increasing share of agriculture, (ii) food production and energy use significantly increases the service sectors' productivity; (iii) food production decreases the industrial activities; (iv) trade openness decreases the share of services to GDP while it supports the industrial share to GDP; and finally, (v) energy demand decreases along with the increase agricultural share in the region. The results emphasize the need for an interactive environmental model that facilitates the process of sustainable development across the globe.
  4. Khairudin NF, Mohammadi M, Mohamed AR
    Environ Sci Pollut Res Int, 2021 Jun;28(23):29157-29176.
    PMID: 33550559 DOI: 10.1007/s11356-021-12794-0
    This study deals with the development of alumina-supported cobalt (Co/Al2O3) catalysts with remarkable performance in dry reforming of methane (DRM) and least carbon deposition. The influence of Co content, calcination, and reduction temperatures on the physicochemical attributes and catalyst activity of the developed catalysts was extensively studied. For this purpose, several characterization techniques including ICP-MS, H2 pulse chemisorption, HRTEM, H2-TPR, N2 adsorption desorption, and TGA were implemented, and the properties of the developed catalysts were carefully analyzed. The impact of reaction temperature, feed gas ratio, and gas hourly space velocity (GHSV) on the reactants conversion and products yield was investigated. Use of 10%Co/Al2O3 catalyst, calcined at 500°C and reduced under H2 at 900°C in DRM reaction at 850°C, CH4/CO2 ratio of 1:1, and GHSV of 6 L.g-1.h-1 resulted in a remarkable catalytic activity and sustainable performance in long-term operation where great CO2 (96%) and CH4 (98%) conversions and high H2 (83%) and CO (91%) yields with a negligible carbon deposition (3 wt%) were attained in 100-h on-stream reaction. The good performance of the developed catalyst in DRM reaction was attributed to the small Co particle size with well-dispersion on the alumina support which increased the catalytic activity and also the strong metal-support interaction which inhibited any serious metal sintering and enhanced the catalyst stability.
  5. Kura NU, Ramli MF, Sulaiman WNA, Ibrahim S, Aris AZ
    Environ Sci Pollut Res Int, 2018 Mar;25(8):7231-7249.
    PMID: 26686857 DOI: 10.1007/s11356-015-5957-6
    In this paper, numerous studies on groundwater in Malaysia were reviewed with the aim of evaluating past trends and the current status for discerning the sustainability of the water resources in the country. It was found that most of the previous groundwater studies (44 %) focused on the islands and mostly concentrated on qualitative assessment with more emphasis being placed on seawater intrusion studies. This was then followed by inland-based studies, with Selangor state leading the studies which reflected the current water challenges facing the state. From a methodological perspective, geophysics, graphical methods, and statistical analysis are the dominant techniques (38, 25, and 25 %) respectively. The geophysical methods especially the 2D resistivity method cut across many subjects such as seawater intrusion studies, quantitative assessment, and hydraulic parameters estimation. The statistical techniques used include multivariate statistical analysis techniques and ANOVA among others, most of which are quality related studies using major ions, in situ parameters, and heavy metals. Conversely, numerical techniques like MODFLOW were somewhat less admired which is likely due to their complexity in nature and high data demand. This work will facilitate researchers in identifying the specific areas which need improvement and focus, while, at the same time, provide policymakers and managers with an executive summary and knowledge of the current situation in groundwater studies and where more work needs to be done for sustainable development.
  6. Kamaruddin MA, Yusoff MS, Rui LM, Isa AM, Zawawi MH, Alrozi R
    Environ Sci Pollut Res Int, 2017 Dec;24(35):26988-27020.
    PMID: 29067615 DOI: 10.1007/s11356-017-0303-9
    Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.
  7. Koe WS, Lee JW, Chong WC, Pang YL, Sim LC
    Environ Sci Pollut Res Int, 2020 Jan;27(3):2522-2565.
    PMID: 31865580 DOI: 10.1007/s11356-019-07193-5
    Photocatalysis is an ecofriendly technique that emerged as a promising alternative for the degradation of many organic pollutants. The weaknesses of the present photocatalytic system which limit their industrial applications include low-usage of visible light, fast charge recombination, and low migration ability of the photo-generated electrons and holes. Therefore, various elements such as noble metals and transition metals as well as non-metals and metalloids (i.e., graphene, carbon nanotube, and carbon quantum dots) are doped into the photocatalyst as co-catalysts to enhance the photodegradation performance. The incorporation of the co-catalyst which alters the photocatalytic mechanism was discussed in detail. The application of photocatalysts in treating persistent organic pollutants such as pesticide, pharmaceutical compounds, oil and grease and textile in real wastewater was also discussed. Besides, a few photocatalytic reactors in pilot scale had been designed for the effort of commercializing the system. In addition, hybrid photocatalytic system integrating with membrane filtration together with their membrane fabrication methods had also been reviewed. This review outlined various types of heterogeneous photocatalysts, mechanism, synthesis methods of biomass supported photocatalyst, photocatalytic degradation of organic substances in real wastewater, and photocatalytic reactor designs and their operating parameters as well as the latest development of photocatalyst incorporated membrane.
  8. Yeo JS, Koting S, Onn CC, Mo KH
    Environ Sci Pollut Res Int, 2021 Jun;28(23):29009-29036.
    PMID: 33881693 DOI: 10.1007/s11356-021-13836-3
    Paving block is a widely used pavement material due to its long service life, fast and easy production and easily replaced for maintenance purpose. The huge production volume of paving blocks consumes large amount of natural aggregates such as sand and granite. Therefore, there is a necessity to review the utilization of alternative materials as the aggregate replacement to cut down both the consumption of natural resources and disposal of various waste. This paper thus analyses published works and provides a summary of knowledge on the effect of utilizing selected waste materials such as soda-lime glass, cathode ray tube (CRT) glass, recycled concrete waste, marble waste, crumb rubber (CR) waste and waste foundry sand (WFS) as aggregate replacement in concrete paving blocks fabrication. The influence of each waste material on the properties of paving block is discussed and highlighted in this paper. The adherence of the waste material paving block to the standard requirements is also presented to provide a clear direction on the utilization of these materials for practical application. Soda-lime glass, CRT glass, pre-treated RCA and calcined WFS have the potential to be utilized in high quantities (30-100%), normal RCA and marble waste can be incorporated in moderate amount (30%) while CR waste and WFS is limited to low amount (6-10%). In overall, the usage of waste materials as aggregate replacement has good potential for producing eco-friendly concrete paving block towards the sustainable development of construction material.
  9. Isa MH, Bashir MJK, Wong LP
    Environ Sci Pollut Res Int, 2022 Jun;29(29):44779-44793.
    PMID: 35138542 DOI: 10.1007/s11356-022-19022-3
    In this study, palm oil mill effluent (POME) treated by ultrasonication at optimum conditions (sonication power: 0.88 W/mL, sonication duration: 16.2 min and total solids: 6% w/v) obtained from a previous study was anaerobically digested at different hydraulic retention times (HRTs). The reactor biomass was subjected to metagenomic study to investigate the impact on the anaerobic community dynamics. Experiments were conducted in two 5 L continuously stirred fill-and-draw reactors R1 and R2 operated at 30 ± 2 °C. Reactor R1 serving as control reactor was fed with unsonicated POME with HRT of 15 and 20 days (R1-15 and R1-20), whereas reactor R2 was fed with sonicated POME with the same HRTs (R2-15 and R2-20). The most distinct archaea community shift was observed among Methanosaeta (R1-15: 26.6%, R2-15: 34.4%) and Methanobacterium (R1-15: 7.4%, R2-15: 3.2%). The genus Methanosaeta was identified from all reactors with the highest abundance from the reactors R2. Mean daily biogas production was 6.79 L from R2-15 and 4.5 L from R1-15, with relative methane gas abundance of 85% and 73%, respectively. Knowledge of anaerobic community dynamics allows process optimization for maximum biogas production.
  10. Ansari M, Othman F, Abunama T, El-Shafie A
    Environ Sci Pollut Res Int, 2018 Apr;25(12):12139-12149.
    PMID: 29455350 DOI: 10.1007/s11356-018-1438-z
    The function of a sewage treatment plant is to treat the sewage to acceptable standards before being discharged into the receiving waters. To design and operate such plants, it is necessary to measure and predict the influent flow rate. In this research, the influent flow rate of a sewage treatment plant (STP) was modelled and predicted by autoregressive integrated moving average (ARIMA), nonlinear autoregressive network (NAR) and support vector machine (SVM) regression time series algorithms. To evaluate the models' accuracy, the root mean square error (RMSE) and coefficient of determination (R2) were calculated as initial assessment measures, while relative error (RE), peak flow criterion (PFC) and low flow criterion (LFC) were calculated as final evaluation measures to demonstrate the detailed accuracy of the selected models. An integrated model was developed based on the individual models' prediction ability for low, average and peak flow. An initial assessment of the results showed that the ARIMA model was the least accurate and the NAR model was the most accurate. The RE results also prove that the SVM model's frequency of errors above 10% or below - 10% was greater than the NAR model's. The influent was also forecasted up to 44 weeks ahead by both models. The graphical results indicate that the NAR model made better predictions than the SVM model. The final evaluation of NAR and SVM demonstrated that SVM made better predictions at peak flow and NAR fit well for low and average inflow ranges. The integrated model developed includes the NAR model for low and average influent and the SVM model for peak inflow.
  11. Sulaimon AA, Murungi PI, Tackie-Otoo BN, Nwankwo PC, Bustam MA
    Environ Sci Pollut Res Int, 2023 Dec;30(56):119309-119328.
    PMID: 37924403 DOI: 10.1007/s11356-023-30635-0
    Plant extracts have been shown to effectively inhibit metal corrosion. Using the Box-Behnken design, gravimetric, and electrochemical techniques, analyses were designed to investigate the anti-corrosion potential of okra in a 1M HCl medium. The inhibition performances derived from the various methods were in good agreement, demonstrating that physio-chemisorption was effective and adhered to the Langmuir isotherm model. The efficiency of okra mucilage extract was 96% at a much lower concentration compared to 91.2% and 88.4% for the unsieved extract and gelly-okra filtrate, respectively. FTIR results showed the presence of several functional groups in the okra mucilage extract that are associated with adsorption, and TGA analysis revealed that the extract has high thermal stability. FESEM analysis also supported evidence of adsorption. It was determined that corrosion inhibition by okra mucilage extract was primarily influenced by temperature, followed by extract concentration, with immersion time having the least effect. From the model optimization, it was observed that okra mucilage extract at 200 ppm, 60°C, and 24 h gave an inhibition efficiency of 89.98% and high desirability. These results demonstrate the high capacity of natural okra as an efficient biodegradable corrosion inhibitor.
  12. Li X, Zhang F, Shi J, Chan NW, Cai Y, Cheng C, et al.
    Environ Sci Pollut Res Int, 2024 Feb;31(6):9333-9346.
    PMID: 38191729 DOI: 10.1007/s11356-023-31702-2
    As an inland dryland lake basin, the rivers and lakes within the Lake Bosten basin provide scarce but valuable water resources for a fragile environment and play a vital role in the development and sustainability of the local societies. Based on the Google Earth Engine (GEE) platform, combined with the geographic information system (GIS) and remote sensing (RS) technology, we used the index WI2019 to extract and analyze the water body area changes of the Bosten Lake basin from 2000 to 2021 when the threshold value is -0.25 and the slope mask is 8°. The driving factors of water body area changes were also analyzed using the partial least squares-structural equation model (PLS-SEM). The result shows that in the last 20 years, the area of water bodies in the Bosten Lake basin generally fluctuated during the dry, wet, and permanent seasons, with a decreasing trend from 2000 to 2015 and an increasing trend between 2015 and 2019 followed by a steadily decreasing trend afterward. The main driver of the change in wet season water bodies in the Bosten Lake basin is the climatic factors, with anthropogenic factors having a greater influence on the water body area of dry season and permanent season than that of wet season. Our study achieved an accurate and convenient extraction of water body area and drivers, providing up-to-date information to fully understand the spatial and temporal variation of surface water body area and its drivers in the basin, which can be used to effectively manage water resources.
  13. Silitonga AS, Hassan MH, Ong HC, Kusumo F
    Environ Sci Pollut Res Int, 2017 Nov;24(32):25383-25405.
    PMID: 28932948 DOI: 10.1007/s11356-017-0141-9
    The purpose of this study is to investigate the performance, emission and combustion characteristics of a four-cylinder common-rail turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends. A kernel-based extreme learning machine (KELM) model is developed in this study using MATLAB software in order to predict the performance, combustion and emission characteristics of the engine. To acquire the data for training and testing the KELM model, the engine speed was selected as the input parameter, whereas the performance, exhaust emissions and combustion characteristics were chosen as the output parameters of the KELM model. The performance, emissions and combustion characteristics predicted by the KELM model were validated by comparing the predicted data with the experimental data. The results show that the coefficient of determination of the parameters is within a range of 0.9805-0.9991 for both the KELM model and the experimental data. The mean absolute percentage error is within a range of 0.1259-2.3838. This study shows that KELM modelling is a useful technique in biodiesel production since it facilitates scientists and researchers to predict the performance, exhaust emissions and combustion characteristics of internal combustion engines with high accuracy.
  14. Mustafa S, Bahar A, Aziz ZA, Darwish M
    Environ Sci Pollut Res Int, 2022 Dec;29(58):87114-87131.
    PMID: 35802329 DOI: 10.1007/s11356-022-21402-8
    Modeling three-dimensional contaminant transport released from arbitrary shape source geometries is useful in hydrological and environmental sciences. This article produces several analytical solutions for three-dimensional contaminant transport in a homogeneous and isotropic aquifer by using Green's function with the groundwater flow which is assumed to be in three directions. The solutions are obtained for both finite depth aquifer and semi-infinite depth aquifer. Various types of sources are discussed: point, line, plane, or cuboid sources. The continuous and instantaneous sources are also investigated. A MATLAB coding is developed to calculate the numerical integrals which occur at the solutions. Some solutions are verified with the solutions obtained in the literature. This study confirms the effect of groundwater velocities in all directions on the degree and the directions of contaminant spreading. Additionally, the results highlight the significant effect of the geometrical shape of the contaminant sources on contaminant concentrations for instantaneous and continuous sources. In particular, the cuboid source and the horizontal rectangular source provide the highest concentrations. The analytical solutions developed in this article can be applied for a wide range of contaminant transport.
  15. Onubi HO, Yusof N, Hassan AS, Bahdad AAS
    Environ Sci Pollut Res Int, 2021 Jul;28(27):36598-36610.
    PMID: 33709310 DOI: 10.1007/s11356-021-13334-6
    The adoption of green construction practices (GCP) has been on the increase in recent years as a means of reducing the negative effects of construction on the natural environment. However, GCP have been discovered to expose the construction workers to numerous health and safety (HS) risks, resulting from a decline in safety investment due to the economic burden associated with its adoption. This study explores the means through which GCP influence the HS performance of construction projects through economic performance. To obtain the views of contractors, a survey questionnaire was developed, and data was collected from project managers and site managers of "class A" contractors, with a response rate of 81.55%. The partial least squares structural equation modeling (PLS-SEM) technique was adopted to analyze the data. The results show that the effect of GCP on HS performance is fully mediated by economic performance. The study concludes that for projects that adopt GCP to have high levels of HS performance, they are required to have an optimal economic performance. Efforts should be intensified by the government in providing subsidies, tax waivers, and other incentives for adopters of GCP to ensure the economic performance of their projects since it guarantees high HS performance.
  16. Dogan E, Mohammed KS, Khan Z, Binsaeed RH
    Environ Sci Pollut Res Int, 2024 Apr;31(19):27789-27803.
    PMID: 38517628 DOI: 10.1007/s11356-024-32765-5
    Environmental sustainability is a key target to achieve sustainable development goals (SDGs). However, achieving these targets needs tools to pave the way for achieving SDGs and COP28 targets. Therefore, the primary objective of the present study is to examine the significance of clean energy, research and development spending, technological innovation, income, and human capital in achieving environmental sustainability in the USA from 1990 to 2022. The study employed time series econometric methods to estimate the empirical results. The study confirmed the long-run cointegrating relationship among CO2 emissions, human capital, income, R&D, technological innovation, and clean energy. The results are statistically significant in the short run except for R&D expenditures. In the long run, the study found that income and human capital contribute to further aggravating the environment via increasing CO2 emissions. However, R&D expenditures, technological innovation, and clean energy help to promote environmental sustainability by limiting carbon emissions. The study recommends investment in technological innovation, clean energy, and increasing R&D expenditures to achieve environmental sustainability in the USA.
  17. Almaimani G, Jabbar AAJ, Ibrahim IAA, Alzahrani AR, Bamagous GA, Almaimani RA, et al.
    Environ Sci Pollut Res Int, 2024 Jan;31(3):4439-4452.
    PMID: 38103135 DOI: 10.1007/s11356-023-31349-z
    Herbal medicine is one of the most common fields explored for combating colon cancers, and Pimpinella anisum L. seeds (PAS) have been utilized widely as medicinal agents because of their increased essential oil (trans-anethole) contents. In this essence, our study investigates the toxic effect and chemoprotective potentials of PAS against azoxymethane (AOM)-induced colon cancer in rats. The toxicity trial for PAS conducted by clustering fifteen rats into three groups (five rats each): A, normal control had 10% Tween 20; B, ingested with 2 g/kg PAS; and C, supplemented with 4 g/kg PAS. The in vivo cancer trial was performed by using 30 rats (Sprague-Dawley) that were randomly adapted in five steel cages (six rats each): group A, normal controls received two subcutaneous injections of normal saline 0.09% and ingested orally 10% Tween 20; groups B-E, rats received two injections of 15 mg/kg of azoxymethane (AOM) subcutaneously in 2 weeks and treated orally with 10% Tween 20 (group B) or intraperitoneal injection of 5-fluorouracil (35 mg/kg) (group C), or orally given 200 mg/kg PAS (group D) and 400 mg/kg PAS (group E) for 8 weeks. After the scarification of rats, the colon tissues were dissected for gross and histopathological evaluations. The acute toxicity trial showed the absence of any toxic signs in rats even after 14 days of ingesting 4 g/kg of PAS. The chemoprotective experiment revealed significant inhibitory potentials (65.93%) of PAS (400 mg/kg) against aberrant crypto foci incidence that could be correlated with its positive modulation of the immunohistochemically proteins represented by a significant up-regulation of the Bax protein and a decrease of the Bcl-2 protein expressions in colon tissues. Furthermore, PAS-treated rats had notably lower oxidative stress in colon tissues evidenced by decreased MDA levels and increased antiradical defense enzymes (SOD, CAT, and GPx). The outcomes suggest 400 mg/kg PAS as a viable additive for the development of potential pharmaceuticals against colorectal cancer.
  18. Dieng H, Satho T, Abang F, Miake F, Ghani IA, Latip NA, et al.
    Environ Sci Pollut Res Int, 2017 Sep;24(26):21375-21385.
    PMID: 28744676 DOI: 10.1007/s11356-017-9624-y
    Yearly, huge amounts of sock refuse are discarded into the environment. Socks contain many molecules, and worn ones, which are rich in smell-causing bacteria, have a strong influence on animals' behaviors. But the impacts of sock odor on the oviposition behavior of dengue vectors are unknown. We assessed whether Aedes albopictus changes its oviposition activity in response to the presence of used socks extract (USEx) in potential breeding grounds, using choice and no-choice bioassays (NCB). When furnished even chances to oviposit in two sites holding USEx and two others containing water (control), Ae. albopictus deposited significantly less eggs in USEx than in water sites. A similar pattern of oviposition preference was also observed when there were more oviposition options in water. When there were greater oviposition opportunities in USEx sites, Ae. albopictus oviposited preferentially in water. Females laid significantly more eggs during the NCB involving water than USEx. Also, significantly more mature eggs were retained by females in the NCB with USEx than in that with water. These observations strongly suggest the presence of molecules with either repellent or deterrent activities against Ae. albopictus females and provide an impetus to advocate the integration of used socks in dengue control programs. Such applications could be a realistic end-of-life recourse to reroute this waste from landfills.
  19. Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA
    Environ Sci Pollut Res Int, 2018 Feb;25(6):5164-5180.
    PMID: 28361404 DOI: 10.1007/s11356-017-8855-2
    Violacein, violet pigment produced by Chromobacterium violaceum, has attracted much attention recently due to its pharmacological properties including antibacterial activity. The present study investigated possible antibacterial mode of action of violacein from C. violaceum UTM5 against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains. Violet fraction was obtained by cultivating C. violaceum UTM5 in liquid pineapple waste medium, extracted, and fractionated using ethyl acetate and vacuum liquid chromatography technique. Violacein was quantified as major compound in violet fraction using HPLC analysis. Violet fraction displayed bacteriostatic activity against S. aureus ATCC 29213 and methicillin-resistant S. aureus ATCC 43300 with minimum inhibitory concentration (MIC) of 3.9 μg/mL. Fluorescence dyes for membrane damage and scanning electron microscopic analysis confirmed the inhibitory effect by disruption on membrane integrity, morphological alternations, and rupture of the cell membranes of both strains. Transmission electron microscopic analysis showed membrane damage, mesosome formation, and leakage of intracellular constituents of both bacterial strains. Mode of action of violet fraction on the cell membrane integrity of both strains was shown by release of protein, K+, and extracellular adenosine 5'-triphosphate (ATP) with 110.5 μg/mL, 2.34 μg/mL, and 87.24 ng/μL, respectively, at 48 h of incubation. Violet fraction was toxic to human embryonic kidney (HEK293) and human fetal lung fibroblast (IMR90) cell lines with LC50 value of 0.998 ± 0.058 and 0.387 ± 0.002 μg/mL, respectively. Thus, violet fraction showed a strong antibacterial property by disrupting the membrane integrity of S. aureus and MRSA strains. This is the first report on the possible mode of antibacterial action of violet fraction from C. violaceum UTM5 on S. aureus and MRSA strains.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links