Interleukin-6 (IL-6) is a cytokine that involved in the different phases of wound healing. It is responsible for promoting inflammation, regulating tissue repair scar formation, stimulating the production of extracellular matrix components and recruiting immune cells to the wound site. Therefore, suppressing IL-6 is beneficial for wound healing. However, no small molecules are currently available in the market against the IL-6. As a result, this research gap motivates us to find a potential inhibitor. This study aimed to investigate the wound healing potential of novel β-cycloidal-derived mono-carbonyl curcumin analogs reported in the literature through screening a series of computational studies. The calculated pIC50 value of 18 compounds (below 10) showed that all compounds may have potential therapeutic efficacy. Molecular docking studies revealed that compound C12 (-45.6044 kcal/mol) bound most strongly in the active site of IL-6 compared to the FDA-approved drug clindamycin (-42.3223). The Molecular Dynamic (MD) simulation displayed that lead compound C12 had the highest stability in the active site of IL-6 compared to the reference drug clindamycin. Furthermore, MMGBSA results indicated that C12 (-20.28 kcal/mol) had the highest binding energy compared to clindamycin (-8.36 kcal/mol). The ADMET analysis predicted that C12 are favourable for drug candidates. This study recommended compound C12 as a lead IL-6 inhibitor for future testing and development as therapeutics for wound healing.Communicated by Ramaswamy H. Sarma.
The recent outbreak of the Ebola virus (EBOV) has marked it as one of the most severe health threats globally. Among various anti-EBOV inhibitors studied, galidesivir (BCX4430) has shown remarkable efficacy. This study aims to identify novel potential anti-EBOV drugs among galidesivir analogs, focusing on the Zaire ebolavirus (Z-EBOV), which exhibits a mortality rate of 90%. We subjected 200 candidate compounds to molecular docking calculations, followed by an evaluation of the bioactivity of the top 25 compounds using the OSIRIS Property Explorer. Initial 50 ns molecular dynamics (MD) simulations were then performed. According to our findings, only six compounds exhibited positive drug scores. We further performed molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations of binding energy over 50 ns, selecting the two top-performing compounds for extended 150 ns MD simulations. CID 117698807 and CID 117712809 showed higher binding stability compared to galidesivir, with ΔGbinding values of -36.7 and -53.4 kcal/mol, respectively. Both compounds demonstrated high stability within the Z-EBOV-V24 active site over the 150 ns MD simulations. Hence, our study proposes CID 117698807 and CID 117712809 as potential anti-Z-EBOV-V24 drug candidates, warranting further investigation.Communicated by Ramaswamy H. Sarma.
Clinacanthus nutans is a medicinal plant recognised for its anticancer properties. We previously discovered that the C. nutans extract had the most potent inhibitory effect on MCF7 breast cancer cell and significantly induced apoptosis. However, there is a scarcity of studies demonstrating the molecular interactions of C. nutans-derived chemical compounds associated with apoptosis-related proteins. Therefore, the objective of this study was to determine the potential chemical compounds found in the C. nutans extract and examine their interactions with the targeted apoptotic proteins using molecular docking and molecular dynamic simulations. To address this objective, the compounds found in the SF2 extract of C. nutans were analysed using Gas Chromatography-Mass Spectrometry (GC-MS). The molecular interaction of the compounds with the targeted apoptotic proteins were determined using molecular docking and molecular dynamic simulations. GC-MS analysis revealed a total of 32 compounds in the SF2 extract. Molecular docking analysis showed that compound β-amyrenol had the highest binding affinity for MDM2-P53 (-7.26 kcal/mol), BCL2 (-11.14 kcal/mol), MCL1-BAX (-6.42 kcal/mol), MCL1-BID (-6.91 kcal/mol), and caspase-9 (-12.54 kcal/mol), whereas campesterol had the highest binding affinity for caspase-8 (-10.11 kcal/mol) and caspase-3 (-10.14 kcal/mol). These selected compounds were subjected to molecular dynamic simulation at 310 K for 100 ns. The results showed that the selected protein-ligand conformation complexes were stable, compact, and did not alter much when compared to the protein references. The findings indicate that β-amyrenol and campesterol are potentially significant compounds that might provide insight into the molecular interactions of the compounds with the apoptosis-related proteins.Communicated by Ramaswamy H. Sarma.
Serotonin (5-HT) antagonists and reuptake inhibitors (SARIs) are atypical antidepressants for managing major depressive disorder. They are oftentimes applied as adjuvants for ameliorating aftereffects of SSRI antidepressants including insomnia and sexual dysfunction. The few available candidates of this class including lorpiprazole and trazodone also display some daunting side effects, making a continuous search for improved alternatives essential. Natural β-carboline alkaloids (NβCs) are interestingly renowned with broad pharmacological spectrum against several neuropsychiatric disorders including depression. However, their potentials as SARIs remain underexplored. In this study, 982 NβCs retrieved from the Ambinter-Greenpharma (Amb) database were virtually screened for potent SARI alternatives using computational and biocheminformatics approaches: homology modelling of 5-HT1A receptor, Glide HTVS, SP and XP molecular docking, molecular dynamics (MD) simulation, ADMET and mutagenicity predictions. The homology receptor was validated as a good representative of human 5HT1A receptor using the RCSB structure validation and quality protocols. From the virtual screening against the 5-HT1A receptor, Amb ligands, Amb18709727 and Amb37857532 showed higher binding affinities by XP scores of -8.725 and -7.976 kcal/mol, and MMGBSA of -87.972 and -107.585 kcal/mol respectively compared to lorpiprazole, a reference SARI with XP score and MMGBSA of -6.512 and -62.788 kcal/mol respectively. They maintained ideal contacts with pharmacologically essential amino acid residues implicated in SARI mechanisms and expressed higher stability and compactness than lorpiprazole throughout the trajectories of 100 ns MD simulation. They also displayed interesting ADME, druggability, low toxicity and mutagenicity profiles, ideal for CNS drug prospects, thus, recommended as putative SARI candidates for further study.Communicated by Ramaswamy H. Sarma.
Burkholderia Lethal Factor 1 (BLF1) is a deamidase first characterized in Burkholderia pseudomallei. This enzyme inhibits cellular protein synthesis by deamidating a glutamine residue to a glutamic acid in its target protein, the eukaryotic translation initiation factor 4 A (eIF4A). In this work, we present the characterization of a hypothetical protein from Xanthomonas sp. Leaf131 as the first report of a BLF1 family ortholog outside of the Burkholderia genus. Although standard sequence similarity searches such as BLAST were not able to detect the homology between the Xanthomonas sp. Leaf131 hypothetical protein sequence and BLF1, our computed structure model for the Xanthomonas sp. hypothetical protein revealed structural similarities with an RMSD of 2.7 Å/164 Cα atoms and a TM-score of 0.72 when superposed. Structural comparisons of the Xanthomonas model structure against BLF1 and Escherichia coli cytotoxic necrotizing factor 1 (CNF1) revealed that the conserved signature LXGC motif and putative catalytic residues are structurally aligned thus signifying a level of functional or mechanistic similarity. Protein-protein docking analysis and molecular dynamics simulations also demonstrated that eIF4A could still be a possible target substrate for deamidation by XLF1 as it is for BLF1. We therefore propose that this Xanthomonas hypothetical protein be renamed as Xanthomonas Lethal Factor 1 (XLF1). Our work also provides further evidence of the utility of programs such as AlphaFold in bridging the computational function annotation transfer gap despite very low sequence identities of under 20%.Communicated by Ramaswamy H. Sarma.
Diabetes mellitus (DM) is a global chronic disease characterized by hyperglycemia and insulin resistance. The unsavory severe gastrointestinal side-effects of synthetic drugs to regulate hyperglycemia have warranted the search for alternative treatments to inhibit the carbohydrate digestive enzymes (e.g. α-amylase and α-glucosidase). Certain phytochemicals recently captured the scientific community's attention as carbohydrate digestive enzyme inhibitors due to their low toxicity and high efficacy, specifically the Withanolides-loaded extract of Withania somnifera. That said, the present study evaluated in silico the efficacy of Withanolide A in targeting both α-amylase and α-glucosidase in comparison to the synthetic drug Acarbose. Protein-ligand interactions, binding affinity, and stability were characterized using pharmacological profiling, high-end molecular docking, and molecular-dynamic simulation. Withanolide A inhibited the activity of α-glucosidase and α-amylase better, exhibiting good pharmacokinetic properties, absorption, and metabolism. Also, Withanolide A was minimally toxic, with higher bioavailability. Interestingly, Withanolide A bonded well to the active site of α-amylase and α-glucosidase, yielding the lowest binding free energy of -82.144 ± 10.671 kcal/mol and -102.1043 ± 11.231 kcal/mol compared to the Acarbose-enzyme complexes (-63.220 ± 13.283 kcal/mol and -82.148 ± 10.671 kcal/mol). Hence, the findings supported the therapeutic potential of Withanolide A as α-amylase and α-glucosidase inhibitor for DM treatment.Communicated by Ramaswamy H. Sarma.
The in silico evaluation of 27 p-aminosalicylic acid derivatives, also referred to as neuraminidase inhibitors was the focus of the current study. To search and predict new potential neuraminidase inhibitors, this study was based on the ligand-based pharmacophore modeling, 3D QSAR, molecular docking, ADMET and MD simulation studies. The data was generated from recently reported inhibitors and divided into two groups, one of these group has 17 compounds for training and the second group has 10 compounds for testing purpose. The generated pharmacophore has known as ADDPR_4 was found statistically significant 3D-QSAR model owing the high trust scores (R2 = 0.974, Q2 = 0.905, RMSE = 0.23). Morever external validation was also employed to evaluate the prediction capacity of the built pharmacophore model (R2pred = 0.905). In addition, in silico ADMET, analyses were employed to evaluate the obtained hits for drug likeness properties. The stability of formed complexes was further evaluated using molecular dynamics. Top two hits showed stable complexes with Neuraminidase based on calculated total binding energy by MM-PBSA.Communicated by Ramaswamy H. Sarma.
Fabry disease (FD) is caused by a defective α-galactosidase A (α-GAL A) enzyme responsible for breaking down globotriaosylceramide (Gb3). To develop affordable therapeutics, more effort is needed to obtain insights into the underlying mechanism of FD and understanding human α-GAL A structure and function in related animal models. We adopted C. elegans as a model to elucidate the sequence and 3D structure of its GANA-1 enzyme and compared it to human α-GAL A. We constructed GANA-1 3D structure by homology modelling and validated the quality of the predicted GANA-1 structure, followed by computational docking of human ligands. The GANA-1 protein shared sequence similarities up to 42.1% with the human α-GAL A in silico and had dual active sites. GANA-1 homology modelling showed that 11 out of 13 amino acids in the first active site of GANA-1 protein overlapped with the human α-GAL A active site, indicating the prospect for substrate cross-reaction. Computational molecular docking using human ligands like Gb3 (first pocket), 4-nitrophenyl-α-D-galactopyranoside (second pocket), α-galactose (second pocket), and N-acetyl-D-galactosamine (second pocket) showed negative binding energy. This revealed that the ligands were able to bind within both GANA-1 active sites, mimicking the human α-GAL A and α-NAGA enzymes. We identified human compounds with adequate docking scores, predicting robust interactions with the GANA-1 active site. Our data suggested that the C. elegans GANA-1 enzyme may possess structural and functional similarities to human α-GAL A, including an intrinsic capability to metabolize Gb3 deposits.Communicated by Ramaswamy H. Sarma.
Immunotherapy using checkpoint inhibitors blocks the checkpoint proteins (programmed cell death receptor-1; PD-1) from binding with their corresponding ligands (programmed cell death receptor ligand-1; PD-L1) to regulate cell signaling pathways. The marine environment holds a huge source of small molecules that are understudied which can be developed as an inhibitor. Hence, this study investigated the inhibitory effect of 19 algae-derived small molecules against PD-L1 by using molecular docking, absorption, distribution, metabolism, and elimination (ADME) properties and molecular dynamics simulations (MDS). The molecular docking revealed that the binding energy of the six best compounds ranges from -11.1 to -9.1 kcal/mol. Fucoxanthinol, in particular, has the strongest binding energy at -11.1 kcal/mol with three hydrogen bonds (ASN:63A, GLN:66A, and ASP:122A). Meanwhile, the MDS demonstrated that the ligands were strongly bound to the protein, indicating the stability of the complexes. In summary, the identified compounds are potential PD-L1 inhibitors in immunotherapy.Communicated by Ramaswamy H. Sarma.
Efficacy of a β-1,4-glucosidase from Trichoderma harzianum T12 (ThBglT12) in disrupting the cell wall of the phytopathogenic fungus M. phaseolina (Macrophomina phaseolina) was studied, as the underlying molecular mechanisms of cell wall recognition remains elusive. In this study, the binding location identified by a consensus of residues predicted by COACH tool, blind docking, and multiple sequence alignment revealed that molecular recognition by ThBglT12 occurred through interactions between the α-1,3-glucan, β-1,3-glucan, β-1,3/1,4-glucan, and chitin components of M. phaseolina, with corresponding binding energies of -7.4, -7.6, -7.5 and -7.8 kcal/mol. The residue consensus verified the participation of Glu172, Tyr304, Trp345, Glu373, Glu430, and Trp431 in the active site pocket of ThBglT12 to bind the ligands, of which Trp345 was the common interacting residue. Root mean square deviation (RMSD), root mean square fluctuation (RMSF), total energy, and minimum distance calculation from molecular dynamics (MD) simulation further confirmed the stability and the closeness of the binding ligands into the ThBglT12 active site pocket. The h-bond occupancy by Glu373 and Trp431 instated the role of the nucleophile for substrate recognition and specificity, crucial for cleaving the β-1,4 linkage. Further investigation showed that the proximity of Glu373 to the anomeric carbon of β-1,3/1,4-glucan (3.5 Å) and chitin (5.5 Å) indicates the nucleophiles' readiness to form enzyme-substrate intermediates. Plus, the neighboring water molecule appeared to be correctly positioned and oriented towards the anomeric carbon to hydrolyze the β-1,3/1,4-glucan and chitin, in less than 4.0 Å. In a nutshell, the study verified that the ThBglT12 is a good alternative fungicide to inhibit the growth of M. phaseolina.Communicated by Ramaswamy H. Sarma.
The presence of synthetic dyes in water bodies and soil is one of the major issues affecting the global ecology, possibly impacting societal well-being adversely due to the colorants' recalcitrance and toxicity. Herein, the study spectrophotometrically monitored the ability of the Bacillus megaterium H2 azoreductase (AzrBmH2) to degrade four synthetic dyes, reactive blue 4, remazol brilliant red, thymol blue, and methyl red, followed by in-silico assessment using GROMACS. We found that the bacterium degraded as much as 60% of all four synthetic dyes at various tested concentrations. The genome analysis revealed five different azoreductase genes, which were then modeled into the AzrBmH21, AzrBmH22/3, and AzrBmH24/5 templates. The AzrBmH2-substrate complexes showed binding energies with all the dyes of between -10.6 to -6.9 kcal/mol and formed 4-6 hydrogen bonds with the predicted catalytic binding residues (His10, Glu 14, Ser 58, Met 99, Val 107, His 183, Asn184 and Gln 191). In contrast, the lowest binding energies were observed for the AzrBmH21-substrates (-10.6 to -7.9). Molecular dynamic simulations revealed that the AzrBmH21-substrate complexes were more stable (RMSD 0.2-0.25 nm, RMSF 0.05 - 0.3 nm) and implied strong bonding with the dyes. The Molecular Mechanics Poisson-Boltzmann Surface Area results also mirrored this outcome, showing the lowest azoreductase-dye binding energy in the order of AzrBmH21-RB4 (-78.18 ± 8.92 kcal/mol), AzrBmH21-RBR (-67.51 ± 7.74 kcal/mol), AzrBmH21-TB (-46.62 ± 5.23 kcal/mol) and AzrBmH21-MR (-40.78 ± 7.87 kcal/mol). In short, the study demonstrated the ability of the B. megaterium H2 to efficiently decolorize the above-said synthetic dyes, conveying the bacterium's promising use for large-scale dye remediation.Communicated by Ramaswamy H. Sarma.
High-risk (HR) Human papillomavirus (e.g. HPV16 and HPV18) causes approximately two-thirds of all cervical cancers in women. Although the first and second-generation vaccines confer some protection against individuals, there are no approved drugs to treat HR-HPV infections to-date. The HPV E1 protein is an attractive drug target because the protein is highly conserved across all HPV types and is crucial for the regulation of viral DNA replication. Hence, we used the Random Forest algorithm to construct a Quantitative-Structure Activity Relationship (QSAR) model to predict the potential inhibitors against the HPV E1 protein. Our QSAR classification model achieved an accuracy of 87.5%, area under the receiver operating characteristic curve of 1.00, and F-measure of 0.87 when evaluated using an external test set. We conducted a drug repurposing campaign by deploying the model to screen the Drugbank database. The top three compounds, namely Cinalukast, Lobeglitazone, and Efatutazone were analyzed for their cell membrane permeability, toxicity, and carcinogenicity. Finally, these three compounds were subjected to molecular docking and 200 ns-long Molecular Dynamics (MD) simulations. The predicted binding free energies for the candidates were calculated using the MM-GBSA method. The binding free energies for Cinalukast, Lobeglitazone, and Efatutazone were -37.84 kcal/mol, -25.30 kcal/mol, and -29.89 kcal/mol respectively. Therefore, we propose their chemical scaffolds for future rational design of E1 inhibitors.Communicated by Ramaswamy H. Sarma.
High blood sugar is a defining feature of chronic disease, diabetes mellitus (DM). There are numerous commercially available medications for the treatment of DM. However, managing the patient's glucose levels remain a challenge because of the gradual reduction in beta-cell function and some side effects from the long-term use of various medications. Previous research has shown that the phenolic compound of henna plant (Lawsonia inermis L.) has the potential as anti-diabetic agent since it is able to suppress the digesting of α-amylase enzyme. In these studies, the plant' phenolic compounds have been isolated and characterized using UV, IR, NMR and LC-MS methods. Furthermore, the compound interaction into the active site of the α-amylase enzyme has been analyzed using molecular docking and molecular dynamics, as well as into α-glucosidase enzyme for predicting of the affinities. The results showed that isolated compound has the molecular formula of C15H10O6 with eleven degrees of unsaturation (DBE; double bond equivalence). The DBE value corresponds to the structure of the luteolin compound having an aromatic ring (8), a carbonyl group on the side chain (1) and a ketone ring with (2). The interaction study of the isolated compound with α-amylase and α-glucosidase enzyme using molecular docking compared to the positive control (acarbose) gave binding energy of -8.03 and -8.95 kcal/mol, respectively. The molecular dynamics simulation using the MM-PBSA method, complex stability based on solvent accessible surface area (SASA), root mean square deviation (RMSD), and root mean square fluctuation (RMSF) revealed that the compound has a high affinity for receptors. The characteristics of skin permeability, absorption, and distribution using ADME-Tox model were also well predicted. The results indicate that the phenolic compound isolated from L. inermis leaf was luteolin and it has the potential as an anti-diabetic agent.Communicated by Ramaswamy H. Sarma.
As a class of ionic liquids with higher biocompatibility, cholinium aminoates ([Cho][AA]) hold potential as solvation media for enzymatic bioprocessing. Herein, solvation effect of [Cho][AA] on structural stability and enzymatic activity of Candida antarctica lipase B (CALB) was evaluated using experimental and computational approaches. Influence of [Cho][AA] on CALB stability was investigated using amino acid anions ([AA]-) with varying hydrophobicity levels. Choline phenylalaninate ([Cho][Phe]) resulted in 109.1% and 110.4% of relative CALB activity to buffer medium at 25 °C and 50 °C, respectively. Simulation results revealed the improvement of CALB's enzymatic activities by [AA]- with a strong hydrophobic character. Shielding of CALB from water molecules by [AA]- was observed. The level of CALB activity was governed by accumulation level of [AA]- at CALB's first hydration layer. The stronger interaction between His224 and Asp187 was postulated to be driven by [Cho][AA], resulting in the activity enhancement of CALB. The slight improvement of CALB activity in 0.05 M [Cho][Phe] at 50 °C could be due to the larger size of entrance to the catalytic site and the stronger interaction between the catalytic residues. The promising effect of [Cho][Phe] on CALB activation may stimulate research efforts in designing a 'fully green' bioreaction for various industrial applications.Communicated by Ramaswamy H. Sarma.
Elevated interleukin 8 (IL-8) expression has been linked to unfavorable outcomes in a range of inflammatory conditions, such as rheumatoid arthritis, psoriasis, and cancer. The human monoclonal antibody (HuMab) 10F8 and the hybridoma 35B11-B bind to an epitope on human IL-8, respectively. 10F8 inhibited interaction between IL-8 and neutrophils in eczema and pustulosis palmoplantaris patients while 35B11-B decreased size lesion in rat model. The binding interaction of monoclonal antibodies and IL-8, especially how complementarity-determining region (CDR) loops could bind the N-terminal of IL-8, has not been fully deliberated at molecular-level. Here, we used a combination of molecular docking, heated and long coarse-grained molecular dynamics simulations to identify key residues of established interaction. Based on heated MD simulation, docked pose of complexes generated by ClusPro showed good binding stability throughout of 70 ns simulation. Based on long molecular dynamic simulations, key residues for the binding were identified throughout of 1000 ns simulation. TYR-53, ASP-99, and ARG-100 of heavy chain CDR together with TYR-33 of light chain CDR are among the highest contributing energy residues within the binding interaction. Meanwhile, LYS11 and TYR13 of IL-8 are important for the determination of overall binding energy. Furthermore, the result of decomposition residues analysis is in good agreement with the interaction analysis data. Current study provides a list of important interacting residues and further scrutiny on these residues is essential for future development and design of a new and stable recombinant antibody against IL-8.Communicated by Ramaswamy H. Sarma.
Nipah virus (NiV) is a novel zoonotic pathogen that belongs to the Paramyxovirus family. The pathogen has infected a number of people in countries like Bangladesh, India, Singapore, and Malaysia with high mortality rates. Although the NiV has been classified as a biosafety level four pathogen (BSL-4), there is no drug approved for treatment against it. In this study, the G glycoprotein of the NiV was chosen as an antiviral target. Based on ADMET criteria, BBB- and BBB + group compounds were screened out of the Gold & platinum Asinex library containing 211620 compounds. After careful evaluation, the selected ligands were then virtually screened to identify the potential inhibitors against the G glycoprotein of the NiV through molecular docking, density functional theory (DFT), and molecular dynamic (MD) simulation studies. In our study we identified 5-(1,3-Benzodioxol-5-yl)-2-[(3-fluorobenzyl)sulfanyl]-5,8-dihydropyrido[2,3-d]pyrimidine-4,7(1H,6H)-dione (from BBB- group) and 7,7-Dimethyl-1-(4-methylphenyl)-3-(4-morpholinylcarbonyl)-7,8-dihydro-2,5(1H,6H)-quinolinedione) (from BBB + group) as potential compounds for the prevention and treatment of NiV related diseases.Communicated by Ramaswamy H. Sarma.
BRCA1-associated protein 1 (BAP1) is a nuclear-localized Ubiquitin C-terminal hydrolase (UCH) that functions as a tumour suppressor, and although BAP1 has been linked to cancer, the molecular mechanism by which BAP1 regulates cancer and its crystal structure have not been elucidated. In this study, computational approaches were used to identify the protein model of BAP1 and its potential inhibitors. The structure of the BAP1 model was constructed through homology modeling and the generated BAP1 model was observed to exhibit good quality protein model as the distribution of its amino acids in the Ramachandran's plot corresponded to 87.7% in the most favoured regions. Docking and simulating of the ubiquitin on the BAP1 model structure revealed the rearrangement of F228, F50, and H169 residues of the BAP1 and switching of BAP1's conformation into a productive state. Our screening results of potential BAP1 inhibitors against the FDA approved drugs shortlisted two potential inhibitors, which are FDA1065 and FDA755. We then performed molecular dynamics simulations and Molecular mechanics Poisson-Boltzmann surface area (MMPBSA) analysis on both inhibitors and found that only the BAP1-FDA755 formed a stable complex and the FDA755 ligand remained its position inside the active site of the BAP1 with a total binding energy of (-51.77 ± 3.49 kcal/mol). We speculate that the presence of methyl group in FDA755 play an important role in stabilizing the BAP1-FDA755 complex.Communicated by Ramaswamy H. Sarma.
Biomolecular association of an anticancer drug, leflunomide (LEF) with human serum albumin (HSA), the leading ligands carrier in human circulation was characterized using biophysical (i.e., fluorescence, absorption and voltammetric) methods and computational (i.e., molecular docking and molecular dynamics simulation) techniques. Evaluations of fluorescence, absorption and voltammetric findings endorsed the complex formation between LEF and HSA. An inverse relationship of Stern-Volmer constant-temperature and hyperchromic shift of the protein's absorption signal with addition of LEF confirmed the LEF quenched the HSA fluorescence through static process. Moderate nature of binding strength (binding constant = 2.76-4.77 × 104 M-1) was detected towards the LEF-HSA complexation, while the association process was naturally driven via hydrophobic interactions, van der Waals interactions and hydrogen bonds, as evident from changes in entropy (ΔS= + 19.91 J mol-1 K-1) and enthalpy (ΔH = - 20.09 kJ mol-1), and molecular docking assessments. Spectral analyses of synchronous and three-dimensional fluorescence validated microenvironmental fluctuations near Trp and Tyr residues upon LEF binding to the protein. LEF association with HSA significantly defended temperature-induced destabilization of the protein. Although LEF was found to attach to HSA at Sudlow's sites I and II, but exhibited greater preference toward its site I, as detected by the investigations of competitive site-marker displacement. Molecular dynamics simulation assessment revealed that the complex attained equilibrium throughout simulations, showing the LEF-HSA complex constancy.Communicated by Ramaswamy H. Sarma.
Zika virus (ZIKV) is a mosquito-borne human flavivirus responsible that causing emergency outbreaks in Brazil. ZIKV is suspected of causing Guillain-Barre syndrome in adults and microcephaly. The NS2B-NS3 protease and NS5 RNA-dependent RNA polymerase (RdRp), central to ZIKV multiplication, have been identified as attractive molecular targets for drugs. We performed a structure-based virtual screening of 2,659 FDA-approved small molecule drugs in the DrugBank database using AutoDock Vina in PyRx v0.8. Accordingly, 15 potential drugs were selected as ZIKV inhibitors because of their high values (binding affinity - binding energy) and we analyzed the molecular interactions between the active site amino acids and the compounds. Among these drugs, tamsulosin was found to interact most efficiently with NS2B/NS3 protease, as indicated by the lowest binding energy value (-8.27 kJ/mol), the highest binding affinity (-5.7 Kcal/mol), and formed H-bonds with amino acid residues TYRB130, SERB135, TYRB150. Furthermore, biotin was found to interact most efficiently with NS5 RdRp with a binding energy of -150.624 kJ/mol, a binding affinity of -5.6 Kcal/mol, and formed H-bonds with the amino acid residues ASPA665 and ASPA540. In vitro, in vivo, and clinical studies are needed to demonstrate anti-ZIKV safety and the efficacy of these FDA-approved drug candidates.Communicated by Ramaswamy H. Sarma.
Aedes aegypti is the primary vector for the transmission of the dengue virus, which causes dengue fever, dengue hemorrhagic illness and dengue shock syndrome. There is now no antiviral medication available to treat DENV, which kills thousands of people each year and infects millions of individuals. A possible target for the creation of fresh and efficient dengue treatments is the DENV-3 NS5 MTase. So, Nigella sativa quinones were examined using in silico methods to find natural anti-DENV compounds. The in silico docking was conducted utilising the Discovery Studio software on the quinones of N. sativa and the active site of the target protein DENV-3 NS5 MTase. In addition, the druggability and pharmacokinetics of the lead compound were assessed. Dithymoquinone was comparable to the reference compound in terms of its ability to bind to the active site of target protein. Dithymoquinone met the requirements for drug likeness and Lipinski's principles, as demonstrated by the ADMET analysis and drug likeness results. The current study indicated that the dithymoquinone from N. sativa had anti-DENV activity, suggesting further drug development and dengue treatment optimisation.Communicated by Ramaswamy H. Sarma.