Affiliations 

  • 1 Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
  • 2 Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
J Biomol Struct Dyn, 2023;41(13):6219-6235.
PMID: 35881145 DOI: 10.1080/07391102.2022.2104376

Abstract

Serotonin (5-HT) antagonists and reuptake inhibitors (SARIs) are atypical antidepressants for managing major depressive disorder. They are oftentimes applied as adjuvants for ameliorating aftereffects of SSRI antidepressants including insomnia and sexual dysfunction. The few available candidates of this class including lorpiprazole and trazodone also display some daunting side effects, making a continuous search for improved alternatives essential. Natural β-carboline alkaloids (NβCs) are interestingly renowned with broad pharmacological spectrum against several neuropsychiatric disorders including depression. However, their potentials as SARIs remain underexplored. In this study, 982 NβCs retrieved from the Ambinter-Greenpharma (Amb) database were virtually screened for potent SARI alternatives using computational and biocheminformatics approaches: homology modelling of 5-HT1A receptor, Glide HTVS, SP and XP molecular docking, molecular dynamics (MD) simulation, ADMET and mutagenicity predictions. The homology receptor was validated as a good representative of human 5HT1A receptor using the RCSB structure validation and quality protocols. From the virtual screening against the 5-HT1A receptor, Amb ligands, Amb18709727 and Amb37857532 showed higher binding affinities by XP scores of -8.725 and -7.976 kcal/mol, and MMGBSA of -87.972 and -107.585 kcal/mol respectively compared to lorpiprazole, a reference SARI with XP score and MMGBSA of -6.512 and -62.788 kcal/mol respectively. They maintained ideal contacts with pharmacologically essential amino acid residues implicated in SARI mechanisms and expressed higher stability and compactness than lorpiprazole throughout the trajectories of 100 ns MD simulation. They also displayed interesting ADME, druggability, low toxicity and mutagenicity profiles, ideal for CNS drug prospects, thus, recommended as putative SARI candidates for further study.Communicated by Ramaswamy H. Sarma.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.