Displaying publications 1 - 20 of 118 in total

  1. Amin, M.C.I., Soom, R.M., Ahmad, I., Lian, H.H.
    This study was carried out to determine the physicochemical properties of carboxymethyl cellulose (CMC) derived from cellulose of palm oil empty fruit bunch (EFB) and its use asa film-coating agent. Samples were prepared at various concentrations and then their physicochemical properties were studied including the viscosity, pH, tensile strength of films, surface properties of the films and dissolution studies on coated tablets. CMC EFB showed lower viscosity than commercial CMC product at the concentration of 1%, 2% and 3% with the values of 44.0cp, 299.9cp, 358.9cp and 90.0cp, 689.9cp, 5569.0cp respectively. The tensile strength of the films for CMC EFB were 7.85MPa, 14.79MPa, 10.36MPa while the commercial CMC exhibited higher values of 21.72MPa, 35.14MPa and 26.9MPa at similar concentration. The scanning electron microscope showed different surface properties of the films for both of them where the commercial CMC is smoother in texture and very transparent unlike its counterpart. However, dissolution studies on paracetamol tablets coated using the samples showed no significant difference (p>0.05) in drug release profile between the two materials. Hence, CMC EFB has a greater potential to be developed as a competitive tablet-coating agent despite the differences in its physicochemical properties.
  2. Hajeb P, Jinap S, Ahmad I
    Environ Monit Assess, 2010 Dec;171(1-4):205-17.
    PMID: 20041345 DOI: 10.1007/s10661-009-1272-3
    Seawater may be contaminated by harmful substances, including toxic elements released by human activities. The present study evaluates the total mercury and methylmercury concentrations and their correlations to fish body size in longtail tuna and short-bodied mackerel from Chendring, Kuantan, at east coast and Kuala Perlis at west costs of Peninsular Malaysia during May to November 2007. Total mercury and methylmercury in muscle tissue of 69 samples of longtail tuna and short-bodied mackerel, ranged from 0.180 to 1.460 μg/g and 0.0.169-0.973 μg/g and 0.251-1.470 μg/g and 0.202-1.352, whereas the methylmercury to total mercury ratio ranged from 70% to 83%, respectively. Samples of both species from the east coast showed higher levels of mercury compared to those from west coast. In all of the locations, significant positive correlations were found between fish body weight and mercury content (R(2) > 0.470). The estimated weekly intake of total mercury and methylmercury from the consumption 66.33 g/week of short-bodied mackerel and 18.34 g/week of longtail tuna (based on local dietry survey) was found to be lower than the maximum limit of 5 and 1.5 μg/kg bodyweight established by FAO/WHO and codex, respectively.
  3. Sakijan AS, Ahmad I
    Med J Malaysia, 1987 Jun;42(2):134-6.
    PMID: 3503189
    A 50-year-old male had an acute jejunogastric intussusception complicating a Bilroth 11 gastrectomy done 20 years previously for peptic ulcer. Preoperatively, the diagnosis was suspected from the plain abdominal radiograph which was subsequently confirmed by barium meal. The patient had an uneventful recovery following resection of the intussuscepted segment and an end-to-end anastomosis. Although rare, the condition is serious and should be recognised promptly and treated surgically. The diagnosis should always be considered in a patient who has had a previous gastrojejunostomy presented with a sudden onset of epigastric pain, bloody vomitus and epigastric mass.
  4. Kaharudin, K. E., Salehuddin, F., Zain, A. S. M., Aziz, M. N. I. A., Ahmad, I.
    The reduction in the dimension of planar MOSFET device appears to be limited when it
    reaches to 22nm technology node. In this research , a new concept of MOSFET architecture named
    as Ultrathin Pillar Vertical Double Gate (VDG) MOSFET device was introduced and it was
    integrated with silicon-on-insulator (SOI) technology for better electrical performances. The virtual
    device fabrication and characterization were executed by using ATHENA and ATLAS modules from
    SILVACO Internationals. The process parameters of the device were then optimized by utilizing the
    Taguchi method for obtaining the lowest value of subthreshold swing (SS). The optimal result of the
    subthreshold swing (SS) was observed to be 58.07 mV/dec with threshold voltage (VTH) of 0.408 V
    and a very low leakage current (IOFF)value of 9.374 x 1016 A/µm. These results are well within the
    predicted value of International Technology Roadmap Semiconductor (ITRS) 2013 for low power
    (LP) requirement in the year 2020. Copyright © 2016 Penerbit Akademia Baru - All rights reserved.
  5. Zakuwan SZ, Ahmad I
    Nanomaterials (Basel), 2018 Oct 24;8(11).
    PMID: 30352971 DOI: 10.3390/nano8110874
    The synergistic effect of using κ-carrageenan bionanocomposites with the hybridization of cellulose nanocrystals (CNCs) and organically modified montmorillonite (OMMT) reinforcements was studied. The effects of different reinforcements and filler contents were evaluated through mechanical testing, and morphological and water uptake properties. The tensile strength and Young's modulus of both bionanocomposites increased with filler loading and optimized at 4%. OMMT incorporation into the κ-carrageenan/CNCs bionanocomposites resulted in further mechanical property improvement with an optimum ratio of 1:1 (CNCs:OMMT) while maintaining high film transparency. X-ray diffraction and morphological analyses revealed that intercalation occurred between the κ-carrageenan bionanocomposite matrix and OMMT. The water uptake of the κ-carrageenan bionanocomposites was significantly reduced by the addition of both CNCs and OMMT. The enhancements in the mechanical properties and performance of the hybrid bionanocomposite indicate compatibility among the reinforcement, biopolymer, and well-dispersed nanoparticles. This renders the hybrid CNC/OMMT/κ-carrageenan nanocomposites extremely promising for food packaging applications.
  6. Zakuwan SZ, Ahmad I
    Nanomaterials (Basel), 2019 Oct 31;9(11).
    PMID: 31683602 DOI: 10.3390/nano9111547
    Herein, hybrid k-carrageenan bio-nanocomposite films were fabricated by using two types of nanofillers, organically modified montmorillonite (OMMT), and cellulose nanocrystals (CNCs). Hybrid bio-nanocomposite films were made by casting techniques employing 4 wt% of CNCs, OMMT, and hybridized CNCs/OMMT in a 1:1 ratio. The rheological and morphological properties and thermal stability of all composites were investigated using rotational rheometry, thermogravimetry analysis, differential scanning calorimetry, field emission scanning electron microscopy, and transmission electron microscopy (TEM). The results showed that the hybrid CNC/OMMT bio-nanocomposite exhibited significantly improved properties as compared to those for the bio-nanocomposites with single fillers due to the nanosize and homogenous nanofiller dispersion in the matrix. Rheological analysis of the hybrid bio-nanocomposite showed higher dynamic shear storage modulus and complex viscosity values when compared to those for the bio-nanocomposite with individual fillers. The TEM analysis of the hybridized CNC/OMMT bio-nanocomposite revealed that more particles were packed together in the CNC network, which restricted the matrix mobility. The heat resistance and thermal stability bio-nanocomposite k-carrageenan film enhanced rapidly with the addition of hybridized CNCs/OMMT to 275 °C. The hybridized CNCs/OMMT exhibited synergistic effects due to the good affinity through interfacial interactions, resulting in the improvement of the material properties.
  7. Wan Ishak WH, Rosli NA, Ahmad I
    Sci Rep, 2020 07 09;10(1):11342.
    PMID: 32647369 DOI: 10.1038/s41598-020-68274-x
    Eco-friendly materials such as poly(lactic acid) (PLA) and cellulose are gaining considerable interest as suitable substitutes for petroleum-based plastics. Therefore, amorphous cellulose (AC) was fabricated as a new reinforcing material for PLA biocomposites by modifying a microcrystalline cellulose (MCC) structure via milling. In this study, the mechanical properties, thermal properties, and degradability of PLA were analysed to compare the effects of both MCC and AC on PLA. The tensile and impact properties improved at an optimum value with AC at 8 wt% and 4 wt% fibre loading, respectively. Notably, a scanning electron micrograph analysis revealed improved AC fibre-matrix adhesion, compared with MCC fibre-matrix adhesion, as well as excellent interaction between AC and PLA. Both MCC and AC improved the hydrolytic degradation of PLA. Moreover, the biocomposites with AC exhibited superior degradation when the incorporation of AC improved the water absorption efficiency of PLA. These findings can expand AC applications and improve sustainability.
  8. Halib N, Ahmad I, Grassi M, Grassi G
    Int J Pharm, 2019 Jul 20;566:631-640.
    PMID: 31195074 DOI: 10.1016/j.ijpharm.2019.06.017
    Cellulose is a natural homopolymer, composed of β-1,4- anhydro-d-glucopyranose units. Unlike plant cellulose, bacterial cellulose (BC), obtained from species belonging to the genera of Acetobacter, Rhizobium, Agrobacterium, and Sarcina through various cultivation methods and techniques, is produced in its pure form. BC is produced in the form of gel-like, never dry sheet with tremendous mechanical properties. Containing up to 99% of water, BC hydrogel is considered biocompatible thus finding robust applications in the health industry. Moreover, BC three-dimensional structure closely resembles the extracellular matrix (ECM) of living tissue. In this review, we focus on the porous BC morphology particularly suited to host oxygen and nutrients thus providing conducive environment for cell growth and proliferation. The remarkable BC porous morphology makes this biological material a promising templet for the generation of 3D tissue culture and possibly for tissue-engineered scaffolds.
  9. Zainuddin N, Ahmad I, Kargarzadeh H, Ramli S
    Carbohydr Polym, 2017 May 01;163:261-269.
    PMID: 28267505 DOI: 10.1016/j.carbpol.2017.01.036
    Nanocrystalline cellulose (NCC) extracted from lignocellulosic materials has been actively investigated as a drug delivery excipients due to its large surface area, high aspect ratio, and biodegradability. In this study, the hydrophobically modified NCC was used as a drug delivery excipient of hydrophobic drug curcumin. The modification of NCC with a cationic surfactant, cetyl trimethylammonium bromide (CTAB) was used to modulate the loading of hydrophobic drugs that would not normally bind to NCC. The FTIR, Elemental analysis, XRD, TGA, and TEM were used to confirm the modification of NCC with CTAB. The effect of concentration of CTAB on the binding efficiency of hydrophobic drug curcumin was investigated. The amounts of curcumin bound onto the CTAB-NCC nanoparticles were analyzed by UV-vis Spectrophotometric. The result showed that the modified CTAB-NCC bound a significant amount of curcumin, in a range from 80% to 96% curcumin added. Nevertheless, at higher concentration of CTAB resulted in lower binding efficiency.
  10. Ravit R, Abdullah J, Ahmad I, Sulaiman Y
    Carbohydr Polym, 2019 Jan 01;203:128-138.
    PMID: 30318196 DOI: 10.1016/j.carbpol.2018.09.043
    Supercapacitor electrode based on conducting polymer of poly (3,4-ethylenedioxythipohene) (PEDOT) doped with nanocrystalline cellulose (NCC) films were prepared via electrochemical polymerization technique. Different applied potential, concentration and deposition time were varied to study the effect of electropolymerization potential, NCC concentration and deposition time on the formation of PEDOT/NCC film. The formation of electrochemically polymerized PEDOT/NCC composite was successfully proven with field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR) techniques where the composites exhibited an interconnected network-like surface morphology. PEDOT/NCC deposited at 1.2 V in 1 mg/ml of NCC for 15 min showed the highest specific capacitance of 117.02 F/g at 100 mV/s with energy density and power density of 11.44 Wh/kg and 99.85 W/kg, respectively at the current density of 0.2 A/g. The incorporation of NCC into PEDOT revealed a lower resistance of charge transfers and improves the cycling stability by retaining 86% of capacitance after 1000 cycles.
  11. Jamil SNAM, Daik R, Ahmad I
    Materials (Basel), 2014 Sep 01;7(9):6207-6223.
    PMID: 28788187 DOI: 10.3390/ma7096207
    A synthesis of acrylonitrile (AN)/butyl acrylate (BA)/fumaronitrile (FN) and AN/EHA (ethyl hexyl acrylate)/FN terpolymers was carried out by redox polymerization using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiator at 40 °C. The effect of comonomers, BA and EHA and termonomer, FN on the glass transition temperature (Tg) and stabilization temperature was studied using Differential Scanning Calorimetry (DSC). The degradation behavior and char yield were obtained by Thermogravimetric Analysis. The conversions of AN, comonomers (BA and EHA) and FN were 55%-71%, 85%-91% and 76%-79%, respectively. It was found that with the same comonomer feed (10%), the Tg of AN/EHA copolymer was lower at 63 °C compared to AN/BA copolymer (70 °C). AN/EHA/FN terpolymer also exhibited a lower Tg at 63 °C when compared to that of the AN/BA/FN terpolymer (67 °C). By incorporating BA and EHA into a PAN system, the char yield was reduced to ~38.0% compared to that of AN (~47.7%). It was found that FN reduced the initial cyclization temperature of AN/BA/FN and AN/EHA/FN terpolymers to 228 and 221 °C, respectively, in comparison to that of AN/BA and AN/EHA copolymers (~260 °C). In addition, FN reduced the heat liberation per unit time during the stabilization process that consequently reduced the emission of volatile group during this process. As a result, the char yields of AN/BA/FN and AN/EHA/FN terpolymers are higher at ~45.1% and ~43.9%, respectively, as compared to those of AN/BA copolymer (37.1%) and AN/EHA copolymer (38.0%).
  12. Gaur R, Shahabuddin S, Ahmad I, Sridewi N
    Nanomaterials (Basel), 2022 Nov 09;12(22).
    PMID: 36432233 DOI: 10.3390/nano12223950
    The present study reported the synthesis of SnS2 nanoparticles by using a thermal decomposition approach using tin chloride and thioacetamide in diphenyl ether at 200 °C over 60 min. SnS2 nanoparticles with novel morphologies were prepared by the use of different alkylamines (namely, octylamine (OCA), dodecylamine (DDA), and oleylamine (OLA)), and their role during the synthesis was explored in detail. The synthesized SnS2 nanostructures were characterized using an array of analytical techniques. The XRD results confirmed the formation of hexagonal SnS2, and the crystallite size varied from 6.1 nm to 19.0 nm and from 2.5 to 8.8 nm for (100) and (011) reflections, respectively. The functional group and thermal analysis confirmed the presence of organics on the surface of nanoparticles. The FE-SEM results revealed nanoparticles, nanoplates, and flakes assembled into flower-like morphologies when dodecylamine, octylamine, and oleylamine were used as capping agents, respectively. The analysis of optical properties showed the variation in the bandgap and the concentration of surface defects on the SnS2 nanoparticles. The role of alkylamine as a capping agent was explored and discussed in detail in this paper and the mechanism for the evolution of different morphologies of SnS2 nanoparticles was also proposed.
  13. Chia MR, Phang SW, Ahmad I
    Polymers (Basel), 2022 Nov 28;14(23).
    PMID: 36501566 DOI: 10.3390/polym14235168
    Intrinsically conducting polymers (ICPs) have been widely studied in various applications, such as sensors, tissue engineering, drug delivery, and semiconductors. Specifically, polyaniline (PANI) stands out in food industry applications due to its advantageous reversible redox properties, electrical conductivity, and simple modification. The rising concerns about food safety and security have encouraged the development of PANI as an antioxidant, antimicrobial agent, food freshness indicator, and electronic nose. At the same time, it plays an important role in food safety control to ensure the quality of food. This study reviews the emerging applications of PANI in the food industry. It has been found that the versatile applications of PANI allow the advancement of modern active and intelligent food packaging and better food quality monitoring systems.
  14. Muhammad J, Ngah ND, Ahmad I
    Korean J Fam Med, 2023 Jan;44(1):44-52.
    PMID: 36709960 DOI: 10.4082/kjfm.22.0016
    BACKGROUND: A written asthma action plan (WAAP) is one of the treatment strategies to achieve good asthma control in children.

    METHODS: This randomized controlled trial was conducted to observe the effect of WAAP on asthma control and quality of life using the Asthma Control Questionnaire and Pediatric Asthma Quality of Life Questionnaire (PAQLQ) at baseline and after 3 months. A repeated measure analysis of variance was used to analyze the mean score difference between the two groups.

    RESULTS: There was no significant difference in mean score for asthma control at baseline between groups (F[degree of freedom (df)]=1.17 [1, 119], P=0.282). However, at 3 months, a significant difference in mean scores between groups was observed (F[df]=7.32 [1, 119], P=0.008). The mean±standard deviation (SD) scores in the intervention and control groups were 0.96±0.53 and 1.21±0.49, respectively. For the analysis of the PAQLQ, no significant difference was observed in the mean score for the quality of life baseline in both groups. There were significant mean score changes for the quality of life (F[df]=10.9 [1, 119], P=0.001) at 3 months follow-up, where those in the intervention group scored a mean±SD score of 6.19±0.45, and those in the control group scored 5.94±0.38. A time-group interaction analysis using repeated-measures analysis of variance showed significant differences in mean score changes (F[df]=5.03 [1, 116], P=0.027) and (F[df]=11.55 [1, 116], P=0.001) where a lower mean score was observed in the intervention group, indicating better asthma control and quality of life, respectively. A significant (P<0.001) negative Pearson correlation between asthma control and quality of life (-0.65) indicated a moderate correlation.

    CONCLUSION: WAAP, along with standard asthma treatment, improves asthma care.

  15. Ng YY, Muhamad R, Ahmad I
    PLoS One, 2023;18(4):e0284014.
    PMID: 37018316 DOI: 10.1371/journal.pone.0284014
    Female sexual dysfunction (FSD) is a common problem among postpartum women. However, little is known about this topic in Malaysia. This study aimed to determine the prevalence of sexual dysfunction and its associated factors in postpartum women in Kelantan, Malaysia. In this cross-sectional study, we recruited 452 sexually active women at six months postpartum from four primary care clinics in Kota Bharu, Kelantan, Malaysia. The participants were asked to fill in questionnaires consisting of sociodemographic information and the Malay Version of the Female Sexual Function Index-6. The data were analyzed using bivariate and multivariate logistic regression analyses. With a 95% response rate, the prevalence of sexual dysfunction among sexually active, six months postpartum women was 52.4% (n = 225). FSD was significantly associated with the older husband's age (p = 0.034) and lower frequency of sexual intercourse (p<0.001). Therefore, the prevalence of postpartum sexual dysfunction in women is relatively high in Kota Bharu, Kelantan, Malaysia. Efforts should be made to raise awareness among healthcare providers about screening for FSD in postpartum women and for their counseling and early treatment.
  16. Zainudin LD, Abdul Hafidz MI, Zakaria AF, Mohd Zim MA, Ismail AI, Abdul Rani MF
    Respirol Case Rep, 2016 Mar;4(1):19-21.
    PMID: 26839696 DOI: 10.1002/rcr2.143
    We report a case of a 34-year-old lady with past history of asthma and pulmonary tuberculosis, who presented 5 weeks pregnant with acute dyspnea. Her chest X-ray showed left-sided complete lung collapse and concomitant right-sided pneumothorax. The pneumothorax was initially managed conservatively with a chest tube but due to its persistence despite suction, was subsequently changed to a Pneumostat(TM), with which she was later discharged. She had a normal echocardiography (ejection fraction [EF] 67%) at 5 weeks of gestation but developed pulmonary hypertension (EF 55%, pulmonary arterial pressure 40.7 mmHg) as the pregnancy progressed. She delivered a healthy baby at 35 weeks via elective lower section caesarean section with spinal anesthesia. We followed her up postnatally and noted the presence of left-sided pulmonary embolism, hypoplastic left lung, and left pulmonary artery. The management of this complex case involved a multidisciplinary effort between general medical, respiratory, obstetric, and cardiothoracic teams.
  17. Adewole MO, Onifade AA, Abdullah FA, Kasali F, Ismail AIM
    Int J Appl Comput Math, 2021;7(3):67.
    PMID: 33898652 DOI: 10.1007/s40819-021-01014-5
    To understand the dynamics of COVID-19 in Nigeria, a mathematical model which incorporates the key compartments and parameters regarding COVID-19 in Nigeria is formulated. The basic reproduction number is obtained which is then used to analyze the stability of the disease-free equilibrium solution of the model. The model is calibrated using data obtained from Nigeria Centre for Disease Control and key parameters of the model are estimated. Sensitivity analysis is carried out to investigate the influence of the parameters in curtailing the disease. Using Pontryagin's maximum principle, time-dependent intervention strategies are optimized in order to suppress the transmission of the virus. Numerical simulations are then used to explore various optimal control solutions involving single and multiple controls. Our results suggest that strict intervention effort is required for quick suppression of the disease.
  18. Zulkifli KK, Mohamed Shah FZ, Ismail AI, Abdul Rahman TH, Ghani RA
    Chron Respir Dis, 2021;18:14799731211056348.
    PMID: 34797178 DOI: 10.1177/14799731211056348
    OBJECTIVES: Dysglycemia is known to be a common comorbidity of chronic obstructive pulmonary disease (COPD). However, undiagnosed dysglycemia and the associated factors remain under-reported. This study aimed to determine the prevalence and the associated factors of dysglycemia among COPD patients.

    METHODS: This was a cross-sectional, single-center study involving adults with established COPD (n = 186) divided into those with or without hospital admissions for acute exacerbation. Oral glucose tolerance test (OGTT) was performed in patients with no known history of dysglycemia.

    RESULTS: There were 16 patients who had overt diabetes, and 32 had prediabetes following the OGTT. Forty percent had histories of hospital admissions for COPD exacerbations. Both groups demonstrated similar 2-h post prandial glucose, glycated hemoglobin (HbA1c) and fasting blood glucose. The incidences of newly diagnosed dysglycemia were higher in both groups (40.8% vs 34.6%, p = 0.57). Cumulative days of admission (≥6 days/year) and weight (≥65 kg) were identified as predictors for dysglycemia within the study population.

    DISCUSSION: This study demonstrated a high number of overt and newly diagnosed dysglycemia among COPD patients who had no previous history of abnormal glucose. Recent acute exacerbations of COPD could have a negative impact on glycemia, although the results did not attain statistical significance. However, there is a need for adequate screening for dysglycemia, particularly among those with frequent acute exacerbations of their condition.

  19. Ghasemzadeh A, Nasiri A, Jaafar HZ, Baghdadi A, Ahmad I
    Molecules, 2014 Oct 30;19(11):17632-48.
    PMID: 25361426 DOI: 10.3390/molecules191117632
    In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old). The activity of the enzyme chalcone synthase (CHS, EC was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF) production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW]) and total phenolic (TP) (18.21 mg/g DW) were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW) and gallic acid (5.96 mg/g DW) were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50) values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP) assay showed a higher activity in 6-month-old buds (488 μM of Fe(II)/g) than in 1-year-old buds (453 μM of Fe(II)/g), in contrast to the DPPH result. Significant correlations (p < 0.05) were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity against HeLa cancer cells with IC50 value of 56.8 µg/mL. These results indicate that early harvesting of snake grass (6-month-old) may yield increased concentrations of secondary metabolites, which are potent antioxidant compounds.
  20. Zainuddin SY, Ahmad I, Kargarzadeh H, Abdullah I, Dufresne A
    Carbohydr Polym, 2013 Feb 15;92(2):2299-305.
    PMID: 23399291 DOI: 10.1016/j.carbpol.2012.11.106
    Biodegradable materials made from cassava starch and kenaf fibers were prepared using a solution casting method. Kenaf fibers were treated with NaOH, bleached with sodium chlorite and acetic buffer solution, and subsequently acid hydrolyzed to obtain cellulose nanocrystals (CNCs). Biocomposites in the form of films were prepared by mixing starch and glycerol/sorbitol with various filler compositions (0-10 wt%). X-ray diffraction revealed that fiber crystallinity increased after each stage of treatment. Morphological observations and size reductions of the extracted cellulose and CNCs were studied using field emission scanning electron microscopy and transmission electron microscopy. The effects of different treatments and filler contents of the biocomposites were evaluated through mechanical tests. Results showed that the tensile strengths and moduli of the biocomposites increased after each treatment and the optimum filler content was 6%.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links