Displaying publications 81 - 100 of 163 in total

Abstract:
Sort:
  1. Chew N, Noor Azhar AM, Bustam A, Azanan MS, Wang C, Lum LCS
    PLoS Negl Trop Dis, 2020 09;14(9):e0008562.
    PMID: 32881914 DOI: 10.1371/journal.pntd.0008562
    BACKGROUND: Dengue is a systemic and dynamic disease with symptoms ranging from undifferentiated fever to dengue shock syndrome. Assessment of patients' severity of dehydration is integral to appropriate care and management. Urine colour has been shown to have a high correlation with overall assessment of hydration status. This study tests the feasibility of measuring dehydration severity in dengue fever patients by comparing urine colour captured by mobile phone cameras to established laboratory parameters.

    METHODOLOGY/PRINCIPAL FINDINGS: Photos of urine samples were taken in a customized photo booth, then processed using Adobe Photoshop to index urine colour into the red, green, and blue (RGB) colour space and assigned a unique RGB value. The RGB values were then correlated with patients' clinical and laboratory hydration indices using Pearson's correlation and multiple linear regression. There were strong correlations between urine osmolality and the RGB of urine colour, with r = -0.701 (red), r = -0.741 (green), and r = -0.761 (blue) (all p-value <0.05). There were strong correlations between urine specific gravity and the RGB of urine colour, with r = -0.759 (red), r = -0.785 (green), and r = -0.820 (blue) (all p-value <0.05). The blue component had the highest correlations with urine specific gravity and urine osmolality. There were moderate correlations between RGB components and serum urea, at r = -0.338 (red), -0.329 (green), -0.360 (blue). In terms of urine biochemical parameters linked to dehydration, multiple linear regression studies showed that the green colourimetry code was predictive of urine osmolality (β coefficient -0.082, p-value <0.001) while the blue colourimetry code was predictive of urine specific gravity (β coefficient -2,946.255, p-value 0.007).

    CONCLUSIONS/SIGNIFICANCE: Urine colourimetry using mobile phones was highly correlated with the hydration status of dengue patients, making it a potentially useful hydration status tool.

  2. Al-Delaimy AK, Al-Mekhlafi HM, Nasr NA, Sady H, Atroosh WM, Nashiry M, et al.
    PLoS Negl Trop Dis, 2014 Aug;8(8):e3074.
    PMID: 25144662 DOI: 10.1371/journal.pntd.0003074
    This cross-sectional study aimed to investigate the current prevalence and risk factors associated with intestinal polyparasitism (the concurrent infection with multiple intestinal parasite species) among Orang Asli school children in the Lipis district of Pahang state, Malaysia.
  3. Naing C, Whittaker MA, Nyunt Wai V, Mak JW
    PLoS Negl Trop Dis, 2014 Aug;8(8):e3071.
    PMID: 25121491 DOI: 10.1371/journal.pntd.0003071
    BACKGROUND: Plasmodium vivax is one of the major species of malaria infecting humans. Although emphasis on P. falciparum is appropriate, the burden of vivax malaria should be given due attention. This study aimed to synthesize the evidence on severe malaria in P. vivax infection compared with that in P. falciparum infection.
    METHODS/PRINCIPAL FINDINGS: We searched relevant studies in electronic databases. The main outcomes required for inclusion in the review were mortality, severe malaria (SM) and severe anaemia (SA). The methodological quality of the included studies was assessed using the Newcastle-Ottawa Scale. Overall, 26 studies were included. The main meta-analysis was restricted to the high quality studies. Eight studies (n = 27490) compared the incidence of SM between P. vivax infection and P. falciparum mono-infection; a comparable incidence was found in infants (OR: 0.45, 95% CI:0.04-5.68, I2:98%), under 5 year age group (OR: 2.06, 95% CI: 0.83-5.1, I2:83%), the 5-15 year-age group (OR: 0.6, 95% CI: 0.31-1.16, I2:81%) and adults (OR: 0.83, 95% CI: 0.67-1.03, I2:25%). Six studies reported the incidences of SA in P. vivax infection and P. falciparum mono-infection; a comparable incidence of SA was found among infants (OR: 3.47, 95%:0.64-18.94, I2: 92%), the 5-15 year-age group (OR:0.71, 95% CI: 0.06-8.57, I2:82%). This was significantly lower in adults (OR:0.75, 95% CI: 0.62-0.92, I2:0%). Five studies (n = 71079) compared the mortality rate between vivax malaria and falciparum malaria. A lower rate of mortality was found in infants with vivax malaria (OR:0.61, 95% CI:0.5-0.76, I2:0%), while this was comparable in the 5-15 year- age group (OR: 0.43, 95% CI:0.06-2.91, I2:84%) and the children of unspecified-age group (OR: 0.77, 95% CI:0.59-1.01, I2:0%).
    CONCLUSION: Overall, the present analysis identified that the incidence of SM in patients infected with P. vivax was considerable, indicating that P. vivax is a major cause of SM. Awareness of the clinical manifestations of vivax malaria should prompt early detection. Subsequent treatment and monitoring of complications can be life-saving.
  4. Sodahlon Y, Ross DA, McPhillips-Tangum C, Lawrence J, Taylor R, McFarland DA, et al.
    PLoS Negl Trop Dis, 2020 10;14(10):e0008565.
    PMID: 33031387 DOI: 10.1371/journal.pntd.0008565
  5. Hunsperger EA, Yoksan S, Buchy P, Nguyen VC, Sekaran SD, Enria DA, et al.
    PLoS Negl Trop Dis, 2014 Oct;8(10):e3171.
    PMID: 25330157 DOI: 10.1371/journal.pntd.0003171
    Commercially available diagnostic test kits for detection of dengue virus (DENV) non-structural protein 1 (NS1) and anti-DENV IgM were evaluated for their sensitivity and specificity and other performance characteristics by a diagnostic laboratory network developed by World Health Organization (WHO), the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) and the Pediatric Dengue Vaccine Initiative (PDVI). Each network laboratory contributed characterized serum specimens for the panels used in the evaluation. Microplate enzyme-linked immunosorbent assay (ELISA) and rapid diagnostic test (RDT formats) were represented by the kits. Each ELISA was evaluated by 2 laboratories and RDTs were evaluated by at least 3 laboratories. The reference tests for IgM anti-DENV were laboratory developed assays produced by the Armed Forces Research Institute for Medical Science (AFRIMS) and the Centers for Disease Control and Prevention (CDC), and the NS1 reference test was reverse transcriptase polymerase chain reaction (RT-PCR). Results were analyzed to determine sensitivity, specificity, inter-laboratory and inter-reader agreement, lot-to-lot variation and ease-of-use. NS1 ELISA sensitivity was 60-75% and specificity 71-80%; NS1 RDT sensitivity was 38-71% and specificity 76-80%; the IgM anti-DENV RDTs sensitivity was 30-96%, with a specificity of 86-92%, and IgM anti-DENV ELISA sensitivity was 96-98% and specificity 78-91%. NS1 tests were generally more sensitive in specimens from the acute phase of dengue and in primary DENV infection, whereas IgM anti-DENV tests were less sensitive in secondary DENV infections. The reproducibility of the NS1 RDTs ranged from 92-99% and the IgM anti-DENV RDTs from 88-94%.
  6. Clayton BA, Middleton D, Arkinstall R, Frazer L, Wang LF, Marsh GA
    PLoS Negl Trop Dis, 2016 06;10(6):e0004775.
    PMID: 27341030 DOI: 10.1371/journal.pntd.0004775
    Person-to-person transmission is a key feature of human Nipah virus outbreaks in Bangladesh. In contrast, in an outbreak of Nipah virus in Malaysia, people acquired infections from pigs. It is not known whether this important epidemiological difference is driven primarily by differences between NiV Bangladesh (NiV-BD) and Malaysia (NiV-MY) at a virus level, or by environmental or host factors. In a time course study, ferrets were oronasally exposed to equivalent doses of NiV-BD or NiV-MY. More rapid onset of productive infection and higher levels of virus replication in respiratory tract tissues were seen for NiV-BD compared to NiV-MY, corroborating our previous report of increased oral shedding of NiV-BD in ferrets and suggesting a contributory mechanism for increased NiV-BD transmission between people compared to NiV-MY. However, we recognize that transmission occurs within a social and environmental framework that may have an important and differentiating role in NiV transmission rates. With this in mind, ferret-to-ferret transmission of NiV-BD and NiV-MY was assessed under differing viral exposure conditions. Transmission was not identified for either virus when naïve ferrets were cohoused with experimentally-infected animals. In contrast, all naïve ferrets developed acute infection following assisted and direct exposure to oronasal fluid from animals that were shedding either NiV-BD or NiV-MY. Our findings for ferrets indicate that, although NiV-BD may be shed at higher levels than NiV-MY, transmission risk may be equivalently low under exposure conditions provided by cohabitation alone. In contrast, active transfer of infected bodily fluids consistently results in transmission, regardless of the virus strain. These observations suggest that the risk of NiV transmission is underpinned by social and environmental factors, and will have practical implications for managing transmission risk during outbreaks of human disease.
  7. Aranjani JM, Manuel A, Abdul Razack HI, Mathew ST
    PLoS Negl Trop Dis, 2021 Nov;15(11):e0009921.
    PMID: 34793455 DOI: 10.1371/journal.pntd.0009921
    Coronavirus Disease 2019 (COVID-19), during the second wave in early 2021, has caused devastating chaos in India. As daily infection rates rise alarmingly, the number of severe cases has increased dramatically. The country has encountered health infrastructure inadequacy and excessive demand for hospital beds, drugs, vaccines, and oxygen. Adding more burden to such a challenging situation, mucormycosis, an invasive fungal infection, has seen a sudden surge in patients with COVID-19. The rhino-orbital-cerebral form is the most common type observed. In particular, approximately three-fourths of them had diabetes as predisposing comorbidity and received corticosteroids to treat COVID-19. Possible mechanisms may involve immune and inflammatory processes. Diabetes, when coupled with COVID-19-induced systemic immune change, tends to cause decreased immunity and an increased risk of secondary infections. Since comprehensive data on this fatal opportunistic infection are evolving against the backdrop of a major pandemic, prevention strategies primarily involve managing comorbid conditions in high-risk groups. The recommended treatment strategies primarily included surgical debridement and antifungal therapy using Amphotericin B and selected azoles. Several India-centric clinical guidelines have emerged to rightly diagnose the infection, characterise the clinical presentation, understand the pathogenesis involved, and track the disease course. Code Mucor is the most comprehensive one, which proposes a simple but reliable staging system for the rhino-orbital-cerebral form. A staging system has recently been proposed, and a dedicated registry has been started. In this critical review, we extensively analyse recent evidence and guidance on COVID-19-associated mucormycosis in India.
  8. Britton S, Cheng Q, Grigg MJ, Poole CB, Pasay C, William T, et al.
    PLoS Negl Trop Dis, 2016 Feb;10(2):e0004443.
    PMID: 26870958 DOI: 10.1371/journal.pntd.0004443
    INTRODUCTION: Plasmodium vivax malaria has a wide geographic distribution and poses challenges to malaria elimination that are likely to be greater than those of P. falciparum. Diagnostic tools for P. vivax infection in non-reference laboratory settings are limited to microscopy and rapid diagnostic tests but these are unreliable at low parasitemia. The development and validation of a high-throughput and sensitive assay for P. vivax is a priority.

    METHODS: A high-throughput LAMP assay targeting a P. vivax mitochondrial gene and deploying colorimetric detection in a 96-well plate format was developed and evaluated in the laboratory. Diagnostic accuracy was compared against microscopy, antigen detection tests and PCR and validated in samples from malaria patients and community controls in a district hospital setting in Sabah, Malaysia.

    RESULTS: The high throughput LAMP-P. vivax assay (HtLAMP-Pv) performed with an estimated limit of detection of 1.4 parasites/ μL. Assay primers demonstrated cross-reactivity with P. knowlesi but not with other Plasmodium spp. Field testing of HtLAMP-Pv was conducted using 149 samples from symptomatic malaria patients (64 P. vivax, 17 P. falciparum, 56 P. knowlesi, 7 P. malariae, 1 mixed P. knowlesi/P. vivax, with 4 excluded). When compared against multiplex PCR, HtLAMP-Pv demonstrated a sensitivity for P. vivax of 95% (95% CI 87-99%); 61/64), and specificity of 100% (95% CI 86-100%); 25/25) when P. knowlesi samples were excluded. HtLAMP-Pv testing of 112 samples from asymptomatic community controls, 7 of which had submicroscopic P. vivax infections by PCR, showed a sensitivity of 71% (95% CI 29-96%; 5/7) and specificity of 93% (95% CI87-97%; 98/105).

    CONCLUSION: This novel HtLAMP-P. vivax assay has the potential to be a useful field applicable molecular diagnostic test for P. vivax infection in elimination settings.

  9. Winskill P, Carvalho DO, Capurro ML, Alphey L, Donnelly CA, McKemey AR
    PLoS Negl Trop Dis, 2015 Nov;9(11):e0004156.
    PMID: 26554922 DOI: 10.1371/journal.pntd.0004156
    BACKGROUND: Aedes aegypti, the principal vector of dengue fever, have been genetically engineered for use in a sterile insect control programme. To improve our understanding of the dispersal ecology of mosquitoes and to inform appropriate release strategies of 'genetically sterile' male Aedes aegypti detailed knowledge of the dispersal ability of the released insects is needed.

    METHODOLOGY/PRINCIPAL FINDINGS: The dispersal ability of released 'genetically sterile' male Aedes aegypti at a field site in Brazil has been estimated. Dispersal kernels embedded within a generalized linear model framework were used to analyse data collected from three large scale mark release recapture studies. The methodology has been applied to previously published dispersal data to compare the dispersal ability of 'genetically sterile' male Aedes aegypti in contrasting environments. We parameterised dispersal kernels and estimated the mean distance travelled for insects in Brazil: 52.8 m (95% CI: 49.9 m, 56.8 m) and Malaysia: 58.0 m (95% CI: 51.1 m, 71.0 m).

    CONCLUSIONS/SIGNIFICANCE: Our results provide specific, detailed estimates of the dispersal characteristics of released 'genetically sterile' male Aedes aegypti in the field. The comparative analysis indicates that despite differing environments and recapture rates, key features of the insects' dispersal kernels are conserved across the two studies. The results can be used to inform both risk assessments and release programmes using 'genetically sterile' male Aedes aegypti.

  10. Nally JE, Arent Z, Bayles DO, Hornsby RL, Gilmore C, Regan S, et al.
    PLoS Negl Trop Dis, 2016 12;10(12):e0005174.
    PMID: 27935961 DOI: 10.1371/journal.pntd.0005174
    The greater white-toothed shrew (Crocidura russula) is an invasive mammalian species that was first recorded in Ireland in 2007. It currently occupies an area of approximately 7,600 km2 on the island. C. russula is normally distributed in Northern Africa and Western Europe, and was previously absent from the British Isles. Whilst invasive species can have dramatic and rapid impacts on faunal and floral communities, they may also be carriers of pathogens facilitating disease transmission in potentially naive populations. Pathogenic leptospires are endemic in Ireland and a significant cause of human and animal disease. From 18 trapped C. russula, 3 isolates of Leptospira were cultured. However, typing of these isolates by standard serological reference methods was negative, and suggested an, as yet, unidentified serovar. Sequence analysis of 16S ribosomal RNA and secY indicated that these novel isolates belong to Leptospira alstonii, a unique pathogenic species of which only 7 isolates have been described to date. Earlier isolations were limited geographically to China, Japan and Malaysia, and this leptospiral species had not previously been cultured from mammals. Restriction enzyme analysis (REA) further confirms the novelty of these strains since no similar patterns were observed with a reference database of leptospires. As with other pathogenic Leptospira species, these isolates contain lipL32 and do not grow in the presence of 8-azagunaine; however no evidence of disease was apparent after experimental infection of hamsters. These isolates are genetically related to L. alstonii but have a novel REA pattern; they represent a new serovar which we designate as serovar Room22. This study demonstrates that invasive mammalian species act as bridge vectors of novel zoonotic pathogens such as Leptospira.
  11. Ten Bosch QA, Singh BK, Hassan MR, Chadee DD, Michael E
    PLoS Negl Trop Dis, 2016 05;10(5):e0004680.
    PMID: 27159023 DOI: 10.1371/journal.pntd.0004680
    The epidemiology of dengue fever is characterized by highly seasonal, multi-annual fluctuations, and the irregular circulation of its four serotypes. It is believed that this behaviour arises from the interplay between environmental drivers and serotype interactions. The exact mechanism, however, is uncertain. Constraining mathematical models to patterns characteristic to dengue epidemiology offers a means for detecting such mechanisms. Here, we used a pattern-oriented modelling (POM) strategy to fit and assess a range of dengue models, driven by combinations of temporary cross protective-immunity, cross-enhancement, and seasonal forcing, on their ability to capture the main characteristics of dengue dynamics. We show that all proposed models reproduce the observed dengue patterns across some part of the parameter space. Which model best supports the dengue dynamics is determined by the level of seasonal forcing. Further, when tertiary and quaternary infections are allowed, the inclusion of temporary cross-immunity alone is strongly supported, but the addition of cross-enhancement markedly reduces the parameter range at which dengue dynamics are produced, irrespective of the strength of seasonal forcing. The implication of these structural uncertainties on predicted vulnerability to control is also discussed. With ever expanding spread of dengue, greater understanding of dengue dynamics and control efforts (e.g. a near-future vaccine introduction) has become critically important. This study highlights the capacity of multi-level pattern-matching modelling approaches to offer an analytic tool for deeper insights into dengue epidemiology and control.
  12. Abu Hassan MR, Aziz N, Ismail N, Shafie Z, Mayala B, Donohue RE, et al.
    PLoS Negl Trop Dis, 2019 03;13(3):e0007243.
    PMID: 30883550 DOI: 10.1371/journal.pntd.0007243
    BACKGROUND: Melioidosis, a fatal infectious disease caused by Burkholderia pseudomallei, is increasingly diagnosed in tropical regions. However, data on risk factors and the geographic epidemiology of the disease are still limited. Previous studies have also largely been based on the analysis of case series data. Here, we undertook a more definitive hospital-based matched case-control study coupled with spatial analysis to identify demographic, socioeconomic and landscape risk factors for bacteremic melioidosis in the Kedah region of northern Malaysia.

    METHODOLOGY/PRINCIPAL FINDINGS: We obtained patient demographic and residential information and clinical presentation and medical history data from 254 confirmed melioidosis cases and 384 matched controls attending Hospital Sultanah Bahiyah (HSB), the main tertiary hospital of Alor Setar, the capital city of Kedah, during the period between 2005 and 2011. Crude and adjusted odds ratios employing conditional logistic regression analysis were used to assess if melioidosis in this region is related to risk factors connected with socio-demographics, various behavioural characteristics, and co-occurring diseases. Spatial clusters of cases were determined using a continuous Poisson model as deployed in SaTScan. A land cover map in conjunction with mapped case data was used to determine disease-land type associations using the Fisher's exact test deploying simulated p-values. Crude and adjusted odds ratios indicate that melioidosis in this region is related to gender (males), race, occupation (farming) and co-occurring chronic diseases, particularly diabetes. Spatial analyses of disease incidence, however, showed that disease risk and geographic clustering of cases are related strongly to land cover types, with risk of disease increasing non-linearly with the degree of human modification of the natural ecosystem.

    CONCLUSIONS/SIGNIFICANCE: These findings indicate that melioidosis represents a complex socio-ecological public health problem in Kedah, and that its control requires an understanding and modification of the coupled human and natural variables that govern disease transmission in endemic communities.

  13. Ngui R, Lim YA, Traub R, Mahmud R, Mistam MS
    PLoS Negl Trop Dis, 2012;6(2):e1522.
    PMID: 22347515 DOI: 10.1371/journal.pntd.0001522
    Currently, information on species-specific hookworm infection is unavailable in Malaysia and is restricted worldwide due to limited application of molecular diagnostic tools. Given the importance of accurate identification of hookworms, this study was conducted as part of an ongoing molecular epidemiological investigation aimed at providing the first documented data on species-specific hookworm infection, associated risk factors and the role of domestic animals as reservoirs for hookworm infections in endemic communities of Malaysia.
  14. Ismail AK, Abd Hamid MNH, Ariff NA, Frederic Ng VER, Goh WC, Abdul Samat NS, et al.
    PLoS Negl Trop Dis, 2023 Jan;17(1):e0010983.
    PMID: 36598885 DOI: 10.1371/journal.pntd.0010983
    Pit vipers from the genus Tropidolaemus are identified as one of the common causes of snake bite from venomous species in Malaysia. All Tropidolaemus species bite cases referred to the Remote Envenomation Consultation Services (RECS) between 2015-2021 were included. A total of 4,718 snake-related injuries cases consulted to RECS with 310 (6.6%) involved Tropidolaemus species; of these 190 (61.3%) were T. subannulatus and 120 (38.7%) T. wagleri. All the T. subannulatus cases occurred in Sabah and Sarawak while all cases of T. wagleri occurred in Peninsular Malaysia. The majority of patients were male (74.8%) and adults between 18-59 years old (61.2%). The upper limb (56.6%) was the most frequent anatomical region involved. Most cases were non-occupationally related (75.4%). Bites from both species caused local pain (77.1%) and swelling (27.2%). Most patients complained of mild pain (48.0%). Paracetamol (40.0%) was the most common analgesic prescribed. Antivenom was not indicated in all cases. Two patients were given antivenom inappropriately before RECS consultation. Most patients (54.7%) needed hospital observation for less than 24 hours. No deaths occurred in the group studied.
  15. Hajissa K, Islam MA, Sanyang AM, Mohamed Z
    PLoS Negl Trop Dis, 2022 Feb 11;16(2):e0009971.
    PMID: 35148325 DOI: 10.1371/journal.pntd.0009971
    INTRODUCTION: Parasitic infections, especially intestinal protozoan parasites (IPPs) remain a significant public health issue in Africa, where many conditions favour the transmission and children are the primary victims. This systematic review and meta-analysis was carried out with the objective of assessing the prevalence of IPPs among school children in Africa.

    METHODS: Relevant studies published between January 2000 and December 2020 were identified by systematic online search on PubMed, Web of Science, Embase and Scopus databases without language restriction. Pooled prevalence was estimated using a random-effects model. Heterogeneity of studies were assessed using Cochrane Q test and I2 test, while publication bias was evaluated using Egger's test.

    RESULTS: Of the 1,645 articles identified through our searches, 46 cross-sectional studies matched our inclusion criteria, reported data from 29,968 school children of Africa. The pooled prevalence of intestinal protozoan parasites amongst African school children was 25.8% (95% CI: 21.2%-30.3%) with E. histolytica/ dispar (13.3%; 95% CI: 10.9%-15.9%) and Giardia spp. (12%; 95% CI: 9.8%-14.3%) were the most predominant pathogenic parasites amongst the study participants. While E. coli was the most common non-pathogenic protozoa (17.1%; 95% CI: 10.9%-23.2%).

    CONCLUSIONS: This study revealed a relatively high prevalence of IPPs in school children, especially in northern and western Africa. Thus, poverty reduction, improvement of sanitation and hygiene and attention to preventive control measures will be the key to reducing protozoan parasite transmission.

  16. Al-Alimi AA, Ali SA, Al-Hassan FM, Idris FM, Teow SY, Mohd Yusoff N
    PLoS Negl Trop Dis, 2014 Mar;8(3):e2711.
    PMID: 24625456 DOI: 10.1371/journal.pntd.0002711
    Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been noted that some G6PD-deficient individuals suffer from more severe clinical presentation of dengue infection. In this study, we aim to investigate the oxidative responses of DENV2-infected monocytes from G6PD-deficient individuals.
  17. Sahimin N, Lim YA, Ariffin F, Behnke JM, Lewis JW, Mohd Zain SN
    PLoS Negl Trop Dis, 2016 Nov;10(11):e0005110.
    PMID: 27806046 DOI: 10.1371/journal.pntd.0005110
    A cross-sectional study of intestinal parasitic infections amongst migrant workers in Malaysia was conducted. A total of 388 workers were recruited from five sectors including manufacturing, construction, plantation, domestic and food services. The majority were recruited from Indonesia (n = 167, 43.3%), followed by Nepal (n = 81, 20.9%), Bangladesh (n = 70, 18%), India (n = 47, 12.1%) and Myanmar (n = 23, 5.9.2%). A total of four nematode species (Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis and hookworms), one cestode (Hymenolepis nana) and three protozoan species (Entamoeba histolytica/dispar, Giardia sp. and Cryptosporidium spp.) were identified. High prevalence of infections with A. lumbricoides (43.3%) was recorded followed by hookworms (13.1%), E. histolytica/dispar (11.6%), Giardia sp. (10.8%), T. trichura (9.5%), Cryptosporodium spp. (3.1%), H. nana (1.8%) and E. vermicularis (0.5%). Infections were significantly influenced by socio-demographic (nationality), and environmental characteristics (length of working years in the country, employment sector and educational level). Up to 84.0% of migrant workers from Nepal and 83.0% from India were infected with intestinal parasites, with the ascarid nematode A. lumbricoides occurring in 72.8% of the Nepalese and 68.1% of the Indian population. In addition, workers with an employment history of less than a year or newly arrived in Malaysia were most likely to show high levels of infection as prevalence of workers infected with A. lumbricoides was reduced from 58.2% to 35.4% following a year's residence. These findings suggest that improvement is warranted in public health and should include mandatory medical screening upon entry into the country.
  18. Moore SM
    PLoS Negl Trop Dis, 2021 10;15(10):e0009385.
    PMID: 34644296 DOI: 10.1371/journal.pntd.0009385
    Japanese encephalitis virus (JEV) is a major cause of neurological disability in Asia and causes thousands of severe encephalitis cases and deaths each year. Although Japanese encephalitis (JE) is a WHO reportable disease, cases and deaths are significantly underreported and the true burden of the disease is not well understood in most endemic countries. Here, we first conducted a spatial analysis of the risk factors associated with JE to identify the areas suitable for sustained JEV transmission and the size of the population living in at-risk areas. We then estimated the force of infection (FOI) for JE-endemic countries from age-specific incidence data. Estimates of the susceptible population size and the current FOI were then used to estimate the JE burden from 2010 to 2019, as well as the impact of vaccination. Overall, 1,543.1 million (range: 1,292.6-2,019.9 million) people were estimated to live in areas suitable for endemic JEV transmission, which represents only 37.7% (range: 31.6-53.5%) of the over four billion people living in countries with endemic JEV transmission. Based on the baseline number of people at risk of infection, there were an estimated 56,847 (95% CI: 18,003-184,525) JE cases and 20,642 (95% CI: 2,252-77,204) deaths in 2019. Estimated incidence declined from 81,258 (95% CI: 25,437-273,640) cases and 29,520 (95% CI: 3,334-112,498) deaths in 2010, largely due to increases in vaccination coverage which have prevented an estimated 314,793 (95% CI: 94,566-1,049,645) cases and 114,946 (95% CI: 11,421-431,224) deaths over the past decade. India had the largest estimated JE burden in 2019, followed by Bangladesh and China. From 2010-2019, we estimate that vaccination had the largest absolute impact in China, with 204,734 (95% CI: 74,419-664,871) cases and 74,893 (95% CI: 8,989-286,239) deaths prevented, while Taiwan (91.2%) and Malaysia (80.1%) had the largest percent reductions in JE burden due to vaccination. Our estimates of the size of at-risk populations and current JE incidence highlight countries where increasing vaccination coverage could have the largest impact on reducing their JE burden.
  19. Shearer FM, Huang Z, Weiss DJ, Wiebe A, Gibson HS, Battle KE, et al.
    PLoS Negl Trop Dis, 2016 Aug;10(8):e0004915.
    PMID: 27494405 DOI: 10.1371/journal.pntd.0004915
    BACKGROUND: Infection by the simian malaria parasite, Plasmodium knowlesi, can lead to severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. Despite being a serious public health concern, the geographical distribution of P. knowlesi malaria risk is poorly understood because the parasite is often misidentified as one of the human malarias. Human cases have been confirmed in at least nine Southeast Asian countries, many of which are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated.

    METHODOLOGY/PRINCIPAL FINDINGS: A total of 439 records of P. knowlesi infections in humans, macaque reservoir and vector species were collated. To predict spatial variation in disease risk, a model was fitted using records from countries where the infection data coverage is high. Predictions were then made throughout Southeast Asia, including regions where infection data are sparse. The resulting map predicts areas of high risk for P. knowlesi infection in a number of countries that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam) as well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the Philippines).

    CONCLUSIONS/SIGNIFICANCE: We have produced the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk. Our map provides an initial evidence base to better understand the spatial distribution of this disease and its potential wider contribution to malaria incidence. Considering malaria elimination goals, areas for prioritised surveillance are identified.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links