Displaying publications 81 - 100 of 173 in total

Abstract:
Sort:
  1. Kian LK, Saba N, Jawaid M, Sultan MTH
    Int J Biol Macromol, 2019 Jan;121:1314-1328.
    PMID: 30208300 DOI: 10.1016/j.ijbiomac.2018.09.040
    The utilization of nanocellulose has increasingly gained attentions from various research fields, especially the field of polymer nanocomposites owing to the growing environmental hazardous of petroleum based fiber products. Meanwhile, the searching of alternative cellulose sources from different plants has become the interests for producing nanocellulose with varying characterizations that expectedly suit in specific field of applications. In this content the long and strong bast fibers from plant species was gradually getting its remarkable position in the field of nanocellulose extraction and nanocomposites fabrications. This review article intended to present an overview of the chemical structure of cellulose, different types of nanocellulose, bast fibers compositions, structure, polylactic acid (PLA) and the most probable processing techniques on the developments of nanocellulose from different bast fibers especially jute, kenaf, hemp, flax, ramie and roselle and its nanocomposites. This article however more focused on the fabrication of PLA based nanocomposites due to its high firmness, biodegradability and sustainability properties in developed products towards the environment. Along with this it also explored a couple of issues to improve the processing techniques of bast fibers nanocellulose and its reinforcement in the PLA biopolymer as final products.
    Matched MeSH terms: Cellulose/chemistry*
  2. Mohamad Nor N, Hashim NHF, Quay DHX, Mahadi NM, Illias RM, Abu Bakar FD, et al.
    Int J Biol Macromol, 2020 Feb 01;144:231-241.
    PMID: 31843615 DOI: 10.1016/j.ijbiomac.2019.12.099
    Genome data mining of the Antarctic yeast, Glaciozyma antarctica PI12 revealed an expansin-like protein encoding sequence (GaEXLX1). The GaEXLX1 protein is 24.8 kDa with a high alkaline pI of 9.81. Homology modeling of GaEXLX1 showed complete D1 and D2 domains of a conventional expansin. The protein exhibited 36% sequence similarity to Clavibacter michiganensis EXLX1 (PDB: 4JCW). Subsequently, a recombinant GaEXLX1 protein was produced using Escherichia coli expression system. Incubation with Avicel, filter paper and cotton fiber showed that the protein can disrupt the surface of crystalline and pure cellulose, suggesting a cell wall modification activity usually exhibited by expansin-like proteins. Binding assays displayed that GaEXLX1 can bind to polymeric substrates, including those postulated to be present in the sea ice ecosystem such as crab chitin and moss lichenan. GaEXLX1 may assist in the recognition and loosening of these substrates in the sea ice prior to hydrolysis by other extracellular enzymes. Similar loosening mechanism to classical expansin-like protein has been postulated for this psychrophilic protein based on several conserved residues of GaEXLX1 involved in binding interaction identified by docking analyses.
    Matched MeSH terms: Cellulose/chemistry
  3. Indarti E, Marwan, Rohaizu R, Wanrosli WD
    Int J Biol Macromol, 2019 Aug 15;135:106-112.
    PMID: 31128174 DOI: 10.1016/j.ijbiomac.2019.05.161
    Silylated cellulose has been successfully synthesized using TEMPO-oxidized nanocellulose (TEMPO-NC) from oil palm empty fruit bunch and 3-aminopropyltriethoxysilane (APS) in an ethanol/water medium at a low curing temperature of 40 °C as compared to those reported in the literature of above 100 °C. Confirmation of the grafting process can be seen from the new FTIR peaks at 810 cm-1 and 749 cm-1 which are attributed to the SiC stretching and SiC, and new 13C NMR signals at 10.3, 21.7 and 42.7 ppm which are assigned to C7, C8, and C9 of the silylated TEMPO-NC. The decrease in the intensities of the cellulose peaks of C2, C3, C6 and C6' in the 13C NMR indicates that silylation not only occurs on the hydroxyls, but more importantly on the TEMPO-NC carboxylic moiety of C6', which is postulated as being the primary factor for this successful modification. This is further corroborated by the emergence of three signals at 43, 61, and 69 ppm in the 29Si NMR spectrum which corresponds to Si(OSi)(OR)2R', Si(OSi)2(OR)R', and Si(OSi)3R' units respectively. Additional evidence is provided by the EDX which shows an increase in Si weight percent of 1.94 after reaction. This silylated cellulose from OPEFB has the potentials to be used as bionanocomposite reinforcing elements.
    Matched MeSH terms: Cellulose/chemistry*
  4. Salleh KM, Zakaria S, Sajab MS, Gan S, Kaco H
    Int J Biol Macromol, 2019 Jun 15;131:50-59.
    PMID: 30844455 DOI: 10.1016/j.ijbiomac.2019.03.028
    A green regenerated superabsorbent hydrogel was fabricated with mixtures of dissolved oil palm empty fruit bunch (EFB) cellulose and sodium carboxymethylcellulose (NaCMC) in NaOH/urea system. The formation of hydrogel was aided with epichlorohydrin (ECH) as a crosslinker. The resultant regenerated hydrogel was able to swell >80,000% depending on the NaCMC concentrations. The hydrogel absorbed water rapidly upon exposure to water up to 48 h and gradually declined after 72 h. The crosslinked of covalent bond of COC between dissolved EFB cellulose (EFBC) with NaCMC was confirmed with Attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy. Crystallinity and thermal stability of the hydrogel samples were depended on the concentrations of NaCMC, crosslinking, and swelling process. The strength and stability of crosslinked network was studied by examining the gel fraction of hydrogel. This study explored the swelling ability and probable influenced factors towards physical and chemical properties of hydrogel.
    Matched MeSH terms: Cellulose/chemistry*
  5. Syafri E, Jamaluddin, Wahono S, Irwan A, Asrofi M, Sari NH, et al.
    Int J Biol Macromol, 2019 Sep 15;137:119-125.
    PMID: 31252021 DOI: 10.1016/j.ijbiomac.2019.06.174
    The cellulose microfibers (CMF) from water hyacinth (WH) fiber as a filler in sago starch (SS) biocomposites was investigated. The CMF was isolated by pulping, bleaching and acid hydrolysis methods. The addition of CMF in sago matrix was varied i.e. 0, 5, 10, 15 and 20 wt%. Biocomposites were made by using solution casting and glycerol as a plasticizer. The biocomposites were also determined by tensile test, FTIR, X-Ray, thermogravimetric, SEM, and soil burial tests. The results show that the SS15CMF sample has the highest tensile strength of 10.23 MPa than those other samples. Scanning Electron Microscope (SEM) images show that the strong interaction was formed between CMF WH and matrix. Fourier Transform Infra-red (FTIR) indicated that the functional group of biocomposites was a hydrophilic cluster. The addition of CMF WH in sago starch biocomposites lead to the moisture barrier, crystallinity, and thermal stability increased; it is due to the pure sago starch film was more rapidly degraded than its biocomposites.
    Matched MeSH terms: Cellulose/chemistry*
  6. Salleh KM, Zakaria S, Gan S, Baharin KW, Ibrahim NA, Zamzamin R
    Int J Biol Macromol, 2020 Apr 01;148:11-19.
    PMID: 31893531 DOI: 10.1016/j.ijbiomac.2019.12.240
    Dissolved oil palm empty fruit bunch cellulose (EFBC) and sodium carboxymethylcellulose (NaCMC) were chemically crosslinked with epichlorohydrin (ECH) to generate designated hydrogel. After swelling process in distilled water, the swollen hydrogel was frozen and freeze-dried to form cryogel. The swelling phenomenon of hydrogel during the absorption process gave substantial effects on thinning of crosslinked network wall, pore size and volume, steadiness of cryogel skeletal structure, and re-swelling of cryogel. The swelling effects on hydrogel were confirmed via microscopic study using variable pressure scanning electron microscope (VPSEM). From the retrieved VPSEM images, nano-thin crosslinked network wall of 24.31 ± 1.97 nm and interconnected pores were observed. As a result, the amount of water, the swelling degree, and the freeze-drying process indirectly affected the VPSEM images that indicated pore size and volume, formation of interconnected pores, and re-swelling of cryogel. This study determined the intertwined factors that affected both hydrogel and cryogel properties by investigating the swelling phenomenon and its ensuing effects.
    Matched MeSH terms: Cellulose/chemistry*
  7. Sucinda EF, Abdul Majid MS, Ridzuan MJM, Cheng EM, Alshahrani HA, Mamat N
    Int J Biol Macromol, 2021 Sep 30;187:43-53.
    PMID: 34271052 DOI: 10.1016/j.ijbiomac.2021.07.069
    A packaging material that is environment-friendly with excellent mechanical and physicochemical properties, biodegradable and ultraviolet (UV) protection and thermal stability was prepared to reduce plastic waste. Six different concentrations of Pennisetum purpureum/Napier cellulose nanowhiskers (NWCs) (i.e. 0, 0.5, 1.0, 1.5, 2.0, and 3.0 wt%) were used to reinforce polylactic acid (PLA) by a solvent casting method. The resulting bionanocomposite film samples were characterised in terms of their morphology, chemical structure, crystallinity, thermal degradation and stability, light transmittance, water absorption, biodegradability, and physical and mechanical properties. Field-emission scanning electron microscopy showed the excellent dispersion of NWC in the PLA matrix occurred with NWC concentrations of 0.5-1.5 wt%. All the bionanocomposite film samples exhibited good thermal stability at approximately 343-359 °C. The highest water absorption was 1.94%. The lowest transparency at λ800 was 16.16% for the PLA/3.0% NWC bionanocomposite film, which also has the lowest UVA and UVB transmittance of 7.49% and 4.02%, respectively, making it suitable for packaging materials. The PLA/1.0% NWC film exhibited the highest crystallinity of 50.09% and high tensile strength and tensile modulus of 21.22 MPa and 11.35 MPa, respectively.
    Matched MeSH terms: Cellulose/chemistry*
  8. Kian LK, Jawaid M, Nasef MM, Fouad H, Karim Z
    Int J Biol Macromol, 2021 Dec 01;192:654-664.
    PMID: 34655581 DOI: 10.1016/j.ijbiomac.2021.10.042
    In this study, poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) dual-layer membranes filled with 0-3 wt% cellulose nanowhisker (CNWs) were fabricated with aim to remove metal ions from wastewater. An integrated method was employed in the membrane fabrication process by combining water vapor-induced and crystallization-induced phase inversions. The membrane thickness was measured in between 11 and 13 μm, which did not pose significant flux deviation during filtration process. The 3% CNW filled membrane showed prominent and well-laminated two layers structure. Meanwhile, the increase in CNWs from 0 to 3% loadings could improve the membrane porosity (43-74%) but reducing pore size (2.45-0.54 μm). The heat resistance of neat membrane enhanced by 1% CNW but decreased with loadings of 2-3% CNWs due to flaming behavior of sulphated nanocellulose. Membrane with 3% CNW displayed the tensile strength (23.5 MPa), elongation at break (7.1%), and Young's modulus (0.75 GPa) as compared to other samples. For wastewater filtration performance, the continuous operation test showed that 3% CNW filled membrane exhibited the highest removal efficiency for both cobalt and nickel metal ions reaching to 83% and 84%, respectively. We concluded that CNWs filled dual-layer membranes have potential for future development in the removal of heavy metal ions from wastewater streams.
    Matched MeSH terms: Cellulose/chemistry*
  9. Gunathilake TMSU, Ching YC, Uyama H, Nguyen DH, Chuah CH
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1522-1531.
    PMID: 34740692 DOI: 10.1016/j.ijbiomac.2021.10.215
    The investigation of protein-nanoparticle interactions contributes to the understanding of nanoparticle bio-reactivity and creates a database of nanoparticles for use in nanomedicine, nanodiagnosis, and nanotherapy. In this study, hen's egg white was used as the protein source to study the interaction of proteins with sulphuric acid hydrolysed nanocellulose (CNC). Several techniques such as FTIR, zeta potential measurement, UV-vis spectroscopy, compressive strength, TGA, contact angle and FESEM provide valuable information in the protein-CNC interaction study. The presence of a broader peak in the 1600-1050 cm-1 range of CNC/egg white protein FTIR spectrum compared to the 1600-1050 cm-1 range of CNC sample indicated the binding of egg white protein to CNC surface. The contact angle with the glass surface decreased with the addition of CNC to egg white protein. The FESEM EDX spectra showed a higher amount of N and Na on the surface of CNC. It indicates the density of protein molecules higher around CNC. The zeta potential of CNC changed from -26.7 ± 0.46 to -21.7 ± 0.2 with the introduction of egg white protein due to the hydrogen bonding, polar bonds and electrostatic interaction between surface CNC and protein. The compressive strength of the egg white protein films increased from 0.064 ± 0.01 to 0.36 ± 0.02 MPa with increasing the CNC concentration from 0 to 4.73% (w/v). The thermal decomposition temperature of CNC/egg white protein decreased compared to egg white protein thermal decomposition temperature. According to UV-Vis spectroscopy, the far-UV light (207-222nm) absorption peak slightly changed in the CNC/egg white protein spectrum compared to the egg white protein spectrum. Based on the results, the observations of protein nanoparticle interactions provide an additional understanding, besides the theoretical simulations from previous studies. Also, the results indicate to aim CNC for the application of nanomedicine and nanotherapy. A new insight given by us in this research assumes a reasonable solution to these crucial applications.
    Matched MeSH terms: Cellulose/chemistry*
  10. Ashraf MA, Islam A, Butt MA, Hussain T, Khan RU, Bashir S, et al.
    Int J Biol Macromol, 2021 Nov 30;191:872-880.
    PMID: 34571131 DOI: 10.1016/j.ijbiomac.2021.09.131
    Mixed matrix membranes (MMMs) of cellulose acetate/poly(vinylpyrrolidone) (CA/PVP) infused with acid functionalized multiwall carbon nanotubes (f-MWCNTs) were fabricated by an immersion phase separation technique for hemodialysis application. Membranes were characterized using FTIR, water uptake, contact angle, TGA, DMA and SEM analysis. The FTIR was used to confirm the bonding interaction between CA/PVP membrane matrix and f-MWCNTs. Upon addition of f-MWCNTs, TGA thermograms and glass transition temperature indicated improved thermal stability of MMMs. The surface morphological analysis demonstrated revealed uniform distribution of f-MWCNTs and asymmetric membrane structure. The water uptake and contact angle confirmed that hydrophilicity was increased after incorporation of f-MWCNTs. The membranes demonstrated enhancement in water permeate flux, bovine serum albumin (BSA) rejection with the infusion of f-MWCNTs; whereas BSA based anti-fouling analysis using flux recovery ratio test shown up to 8.4% improvement. The urea and creatinine clearance performance of MMMs were evaluated by dialysis experiment. It has been found that f-MWCNTs integrated membranes demonstrated the higher urea and creatinine clearance with increase of 12.6% and 10.5% in comparison to the neat CA/PVP membrane. Thus, the prepared CA/PVP membranes embedded with f-MWCNTs can be employed for wide range of dialysis applications.
    Matched MeSH terms: Cellulose/chemistry
  11. Theivasanthi T, Anne Christma FL, Toyin AJ, Gopinath SCB, Ravichandran R
    Int J Biol Macromol, 2018 Apr 01;109:832-836.
    PMID: 29133091 DOI: 10.1016/j.ijbiomac.2017.11.054
    Nanocellulose prepared from the natural material has a promising wide range of opportunities to obtain the superior material properties towards various end-products. In this research, commercially available natural cotton was treated with aqueous sodium hydroxide solution to eliminate the hemicellulose and lignin, then cellulose was collected. The collected cellulose was subjected to acid hydrolysis using sulfuric acid to obtain nanocellulose. The prepared nanocellulose was further characterized with the aid of Fourier transform infrared spectroscopy, X-ray diffraction and Scanning Electron Microscopy to elucidate the chemical structure, crystallinity and the morphology.
    Matched MeSH terms: Cellulose/chemistry*
  12. Chen YW, Lee HV
    Int J Biol Macromol, 2018 Feb;107(Pt A):78-92.
    PMID: 28860064 DOI: 10.1016/j.ijbiomac.2017.08.143
    In the present work, four types of newly chosen municipal solid wastes (Panax ginseng, spent tea residue, waste cotton cloth, and old corrugated cardboard) were studied as the promising sources for nanocellulose, which has efficiently re-engineered the structure of waste products into highly valuable nanocellulose materials. The nanocellulose was produced directly via a facile one-pot oxidative hydrolysis process by using H2O2/Cr(NO3)3 solution as the bleaching agent and hydrolysis medium under acidic condition. The isolated nanocellulose products were well-characterized in terms of chemical composition, product yield, morphological structure and thermal properties. The study has found that the crystallinity index of the obtained nanocellulose products were significantly higher (62.2-83.6%) than that of its starting material due to the successive elimination of lignin, hemicellulose and amorphous regions of cellulose, which were in good agreement with the FTIR analysis. The evidence of the successful production of nanocellulose was given by TEM observation which has revealed the fibril widths were ranging from 15.6 to 46.2nm, with high cellulose content (>90%), depending on the cellulosic origin. The physicochemical properties of processed samples have confirmed that the isolation of high purity nanocellulose materials from different daily spent products is possible. The comparative study can help to provide a deep insight on the possibility of revalorizing the municipal solid wastes into nanocellulose via the simple and versatile one-pot isolation system, which has high potential to be used in commercial applications for sustainable development.
    Matched MeSH terms: Cellulose/chemistry*
  13. Ajab H, Dennis JO, Abdullah MA
    Int J Biol Macromol, 2018 Jul 01;113:376-385.
    PMID: 29486259 DOI: 10.1016/j.ijbiomac.2018.02.133
    A novel synthesis and characterization of cellulose, hydroxyapatite and chemically-modified carbon electrode (Cellulose-HAp-CME) composite was reported for the analysis of trace Pb(II) ions detection and its validation in blood serum. The Field Emission Scanning Electron Microscopy (FESEM) analyses showed that the composite retained the orderly porous structure but with scattered particle size agglomeration. The Fourier Transform Infrared Spectroscopy (FTIR) spectra suggested the presence of functional groups associated with the bending and stretching of carbon bonds and intermolecular H-bonding. X-ray Diffraction (XRD) analyses further elucidated that the crystallite size could have influenced the properties of the electrode. Based on Thermo-gravimetric Analysis (TGA/DTG), the composites showed thermal stability with more than 60% residual content at 700°C. The sensor was successfully developed for trace Pb(II) ions detection in complex medium such as blood serum, in the physiologically relevant range of 10-60ppb, with resulting Limit of Detection (LOD) of 0.11±0.36ppb and Limit of Quantification (LOQ) of 0.36±0.36ppb. The newly fabricated electrode could be advantageous as a sensing platform with favourable electrochemical characteristics for robust, in situ and rapid environmental and clinical analyses of heavy metal ions.
    Matched MeSH terms: Cellulose/chemistry*
  14. Kian LK, Jawaid M, Ariffin H, Karim Z
    Int J Biol Macromol, 2018 Jul 15;114:54-63.
    PMID: 29551511 DOI: 10.1016/j.ijbiomac.2018.03.065
    Roselle fiber is a renewable and sustainable agricultural waste enriched with cellulose polysaccharides. The isolation of Nanocrystalline cellulose (NCC) from roselle-derived microcrystalline cellulose (MCC) is an alternative approach to recover the agricultural roselle plant residue. In the present study, acid hydrolysis with different reaction time was carried out to degrade the roselle-derived MCC to form NCC. The characterizations of isolated NCC were conducted through Fourier Transform Infrared Ray (FTIR), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). As evaluated from the performed morphological investigations, the needle-like shape NCC nanostructures were observed under TEM and AFM microscopy studies, while irregular rod-like shape of NCC was observed under FESEM analysis. With 60min hydrolysis time, XRD analysis demonstrated the highest NCC crystallinity degree with 79.5%. In thermal analysis by TGA and DSC, the shorter hydrolysis time tended to produce NCC with higher thermal stability. Thus, the isolated NCC from roselle-derived MCC has high potential to be used in application of pharmaceutical and biomedical fields for nanocomposite fabrication.
    Matched MeSH terms: Cellulose/chemistry*
  15. Wong LC, Poh JH, Tan WT, Khor BK, Murugaiyah V, Leh CP, et al.
    Int J Biol Macromol, 2023 Jan 01;224:483-495.
    PMID: 36273545 DOI: 10.1016/j.ijbiomac.2022.10.138
    Hydrogels are an attractive platform for drug delivery to the skin. Current cellulose hydrogel developments commonly focus on readily available bleached woody cellulose. Considering the detrimental environmental impacts of bleaching reagents, unbleached non-woody biomass was proposed as an alternative. Herein, this study aims to develop hydrogel from native cellulose extracted from oil palm empty fruit bunches for dermal drug delivery with an emphasis on evaluating the effect of alkali solvent compositions on hydrogel formation. Unbleached dissolving pulps were solubilized in alkali solvents containing sodium hydroxide (NaOH) (6-8%w/v) and urea (4-6%w/v) before crosslinking. Hydrogels were loaded with ibuprofen for skin permeation studies. Light brownish hydrogels formed are aesthetically acceptable and biodegradable with low cytotoxicity. NaOH content has a dominant role over urea where thinner and deformable crosslinked network walls in a porous hydrogel structure are associated with high NaOH content. Synergistic effects (cellulose solubility: 94 %; swelling ratio: ~2800 %) were observed at 7%w/v NaOH and 4%w/v urea with low toxicity. Most hydrogels showed >80 % of ibuprofen permeated into the skin and this increased with the swelling ratio of hydrogels. Unbleached cellulose pulps have excellent potential for hydrogel fabrication with outstanding physicomechanical properties for dermal drug delivery.
    Matched MeSH terms: Cellulose/chemistry
  16. Yusefi M, Shameli K, Lee-Kiun MS, Teow SY, Moeini H, Ali RR, et al.
    Int J Biol Macromol, 2023 Apr 01;233:123388.
    PMID: 36706873 DOI: 10.1016/j.ijbiomac.2023.123388
    Polysaccharide-based magnetic nanocomposites can eminently illuminate several attractive features as anticancer drug carriers. In this study, rice straw-based cellulose nanowhisker (CNW) was used as solid support for Fe3O4 nanofillers to synthesize magnetic CNW. Then, cross-linked chitosan-coated magnetic CNW for 5-fluorouracil carrier abbreviated as CH/MCNW/5FU. Fourier-transform infrared, X-Ray diffraction, and X-ray photoelectron spectroscopy analysis indicated successful fabrication and multifunctional properties of the CH/MCNW/5FU nanocomposites. In addition, CH/MCNW/5FU nanocomposites showed hydrodynamic diameter and zeta potential value of 181.31 ± 3.46 nm and +23 ± 1.8 mV, respectively. Based on images of transmission electron microscopy, magnetic CNW as reinforcement was coated with chitosan to obtain almost spherical CH/MCNW/5FU nanocomposites with an average diameter of 37.16 ± 3.08. The nanocomposites indicated desired saturation magnetization and thermal stability, high drug encapsulation efficiency, and pH-dependent swelling and drug release performance. CH/MCNW/5FU nanocomposites showed potent killing effects against colorectal cancer cells in both 2D monolayer and 3D spheroid models. These findings suggest CH/MCNW as a potential carrier for anticancer drugs with high tumour-penetrating capacity.
    Matched MeSH terms: Cellulose/chemistry
  17. Ahmad AA, Kasim KF, Gopinath SCB, Anbu P, Sofian-Seng NS
    Int J Biol Macromol, 2023 Dec 31;253(Pt 2):126795.
    PMID: 37689304 DOI: 10.1016/j.ijbiomac.2023.126795
    Dicranopteris linearis (DL) is a fern in the Gleicheniaceae family, locally known as resam by the Malay community. It has numerous pharmacological benefits, with antiulcer and gastroprotective properties. Peptic ulcer is a chronic and recurring disease that significantly impacts morbidity and mortality, affecting nearly 20 % of the world's population. Despite the effectiveness of peptic ulcer drugs, there is no perfect treatment for the ailment. Encapsulation is an advanced technique that can treat peptic ulcers by incorporating natural sources. This work aims to encapsulate DL extract using different types of cellulose particles by the solvent displacement technique for peptic ulcer medication. The extract was encapsulated using methyl cellulose (MC), ethyl cellulose (EC), and a blend of ethyl methyl cellulose through a dialysis cellulose membrane tube and freeze-dried to yield a suspension of the encapsulated DL extracts. The microencapsulated methyl cellulose chloroform extract (MCCH) has a considerably greater level of total phenolic (84.53 ± 6.44 mg GAE/g), total flavonoid (84.53 ± 0.54 mg GAE/g), and antioxidant activity (86.40 ± 0.63 %). MCCH has the highest percentage of antimicrobial activity against Escherichia coli (2.42 ± 107 × 0.70 CFU/mL), Bacillus subtilis (5.21 ± 107 × 0.90 CFU/mL), and Shigella flexneri (1.25 ± 107 × 0.66 CFU/mL), as well as the highest urease inhibitory activity (50.0 ± 0.21 %). The MCCH particle size was estimated to be 3.347 ± 0.078 μm in diameter. It has been proven that DL elements were successfully encapsulated in the methyl cellulose polymer in the presence of calcium (Ca). Fourier transform infrared (FTIR) analysis indicated significant results, where the peak belonging to the CO stretch of the carbonyl groups of methyl cellulose (MC) shifted from 1638.46 cm-1 in the spectrum of pure MC to 1639.10 cm-1 in the spectrum of the MCCH extract. The shift in the wavenumbers was due to the interactions between the phytochemicals in the chloroform extract and the MC matrix in the microcapsules. Dissolution studies in simulated gastric fluid (SGF) and model fitting of encapsulated chloroform extracts showed that MCCH has the highest EC50 of 6.73 ± 0.27 mg/mL with R2 = 0.971 fitted by the Korsmeyer-Peppas model, indicating diffusion as the mechanism of release.
    Matched MeSH terms: Cellulose/chemistry
  18. Nyoo Putro J, Soetaredjo FE, Santoso SP, Irawaty W, Yuliana M, Wijaya CJ, et al.
    Int J Biol Macromol, 2024 Feb;257(Pt 1):128502.
    PMID: 38040139 DOI: 10.1016/j.ijbiomac.2023.128502
    As a natural raw material to replace synthetic chemicals, cellulose and its derivatives are the most popular choices in the pharmaceutical industry. For drug delivery applications, cellulose is usually used as a cellulose nanocrystal (CNC). CNC-based hydrogels are widely utilized for drug delivery because drug molecules can be encapsulated in their pore-like structures. This study aims to develop CNC hydrogels for the delivery of doripenem antibiotics. CNC was obtained from jackfruit peel extraction, and alginate was used as a network polymer to produce hydrogels. Ionotropic gelation was used in the synthesis of CNC-alginate hydrogel composites. The maximum adsorption of doripenem by CNC was 65.7 mg/g, while the maximum adsorption by CNC-alginate was 98.4 mg/g. One of the most challenging aspects of drug delivery is predicting drug release from a solid matrix using simple and complex mathematical equations. The sigmoidal equation could represent the doripenem release from CNC, while the Ritger-Peppas equation could describe the doripenem release from CNC-Alginate. The biocompatibility testing of CNC and CNC-alginate against a 7F2 cell line indicates that both materials were non-toxic.
    Matched MeSH terms: Cellulose/chemistry
  19. Poulose A, Mathew A, Uthaman A, Lal HM, Parameswaranpillai J, Mathiazhagan A, et al.
    Int J Biol Macromol, 2024 Jan;255:128004.
    PMID: 37979737 DOI: 10.1016/j.ijbiomac.2023.128004
    Cellulose nanofibers have been extracted from arecanut palm sheath fibers via mild oxalic acid hydrolysis coupled with steam explosion technique. Cellulose nanofibers with diameter of 20.23 nm were obtained from arecanut palm sheath fibers. A series of robust hydrophobic cellulose nanopapers were fabricated by combining the synergistic effect of surface roughness induced by the successful deposition of zinc oxide (ZnO) nanoflakes and stearic acid modification via a simple and cost-effective method. In this work, agro-waste arecanut palm sheath was employed as a novel source for the extraction of cellulose nanofibers. 2 wt% of ZnO nanoflakes and 1 M concentration of stearic acid were used to fabricate mechanically robust hydrophobic cellulose nanopapers with a water contact angle (WCA) of 134°. During the deposition of zinc oxide nanoflakes on the CNP for inducing surface roughness, a hydrogen bonding interaction is formed between the hydroxyl groups of cellulose nanofibers and the zinc oxide nanoflakes. When this surface roughened CNP was dipped in stearic acid solution. The hydroxyl groups in zinc oxide nanoflakes undergoes esterification reaction with carboxyl groups in stearic acid solution forming an insoluble stearate layer and thus inducing hydrophobicity on CNP. The fabricated hydrophobic cellulose nanopaper displayed a tensile strength of 22.4 MPa and better UV blocking ability which is highly desirable for the sustainable packaging material in the current scenario. Furthermore, the service life of the pristine and modified cellulose nanopapers was predicted using the Arrhenius equation based on the tensile properties obtained during the accelerated ageing studies. The outcome of this study would be broadening the potential applications of hydrophobic and mechanically robust cellulose nanopapers in sustainable packaging applications.
    Matched MeSH terms: Cellulose/chemistry
  20. Hamidon TS, Idris NN, Adnan R, Haafiz MKM, Zahari A, Hussin MH
    Int J Biol Macromol, 2024 Mar;262(Pt 2):130239.
    PMID: 38367788 DOI: 10.1016/j.ijbiomac.2024.130239
    Herein, cellulose nanocrystals were synthesized from oil palm fronds (CNC-OPF) involving two pretreatment approaches, viz. autohydrolysis and soda pulping. The pretreatments were applied individually to OPF fibers to assess their influence on CNCs' physicochemical and thermal properties. CNC-OPF samples were assessed using complementary characterization techniques, which confirmed their purity and characteristics. CP/MAS 13C NMR and TEM studies revealed that autohydrolysis pretreatment yielded CNCs with effective hemicellulose and extractives removal compared to that of soda pulping. XRD analysis demonstrated that autohydrolysis-treated CNC-OPF contained a much higher crystallinity index compared to soda pulping treatment. BET measurement disclosed a relatively higher surface area and wider pore diameter of autohydrolysis-treated CNC-OPF. Autohydrolysis-treated CNCs were applied as a reinforcement filler in alginate-based hydrogel beads for the removal of 4-chlorophenol from water, which attained a qmax of 19.168 mg g-1. BET analysis revealed the less porous nature of CNC-ALG hydrogel beads which could have contributed to hydrogel beads' relatively lower adsorption capacity. The point of zero charge of CNC-ALG hydrogel beads was 4.82, suggesting their applicability only within a short solution pH range. This study directs future studies to unveil the possibilities of functionalizing CNCs in order to enhance the adsorption performance of CNC-immobilized hydrogel beads towards 4-chlorophenol and other organic contaminants.
    Matched MeSH terms: Cellulose/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links