Affiliations 

  • 1 Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • 2 Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia. Electronic address: chingyc@um.edu.my
  • 3 Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
  • 4 Institute of Applied Materials Science, Vietnam Academy Science and Technology, 01 TL29 District 12, Ho Chi Minh City 700000, Viet Nam
  • 5 Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
Int J Biol Macromol, 2021 Dec 15;193(Pt B):1522-1531.
PMID: 34740692 DOI: 10.1016/j.ijbiomac.2021.10.215

Abstract

The investigation of protein-nanoparticle interactions contributes to the understanding of nanoparticle bio-reactivity and creates a database of nanoparticles for use in nanomedicine, nanodiagnosis, and nanotherapy. In this study, hen's egg white was used as the protein source to study the interaction of proteins with sulphuric acid hydrolysed nanocellulose (CNC). Several techniques such as FTIR, zeta potential measurement, UV-vis spectroscopy, compressive strength, TGA, contact angle and FESEM provide valuable information in the protein-CNC interaction study. The presence of a broader peak in the 1600-1050 cm-1 range of CNC/egg white protein FTIR spectrum compared to the 1600-1050 cm-1 range of CNC sample indicated the binding of egg white protein to CNC surface. The contact angle with the glass surface decreased with the addition of CNC to egg white protein. The FESEM EDX spectra showed a higher amount of N and Na on the surface of CNC. It indicates the density of protein molecules higher around CNC. The zeta potential of CNC changed from -26.7 ± 0.46 to -21.7 ± 0.2 with the introduction of egg white protein due to the hydrogen bonding, polar bonds and electrostatic interaction between surface CNC and protein. The compressive strength of the egg white protein films increased from 0.064 ± 0.01 to 0.36 ± 0.02 MPa with increasing the CNC concentration from 0 to 4.73% (w/v). The thermal decomposition temperature of CNC/egg white protein decreased compared to egg white protein thermal decomposition temperature. According to UV-Vis spectroscopy, the far-UV light (207-222nm) absorption peak slightly changed in the CNC/egg white protein spectrum compared to the egg white protein spectrum. Based on the results, the observations of protein nanoparticle interactions provide an additional understanding, besides the theoretical simulations from previous studies. Also, the results indicate to aim CNC for the application of nanomedicine and nanotherapy. A new insight given by us in this research assumes a reasonable solution to these crucial applications.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.