Displaying publications 81 - 88 of 88 in total

Abstract:
Sort:
  1. Ali A, Al-Rimy BAS, Alsubaei FS, Almazroi AA, Almazroi AA
    Sensors (Basel), 2023 Jul 28;23(15).
    PMID: 37571545 DOI: 10.3390/s23156762
    The swift advancement of the Internet of Things (IoT), coupled with the growing application of healthcare software in this area, has given rise to significant worries about the protection and confidentiality of critical health data. To address these challenges, blockchain technology has emerged as a promising solution, providing decentralized and immutable data storage and transparent transaction records. However, traditional blockchain systems still face limitations in terms of preserving data privacy. This paper proposes a novel approach to enhancing privacy preservation in IoT-based healthcare applications using homomorphic encryption techniques combined with blockchain technology. Homomorphic encryption facilitates the performance of calculations on encrypted data without requiring decryption, thus safeguarding the data's privacy throughout the computational process. The encrypted data can be processed and analyzed by authorized parties without revealing the actual contents, thereby protecting patient privacy. Furthermore, our approach incorporates smart contracts within the blockchain network to enforce access control and to define data-sharing policies. These smart contracts provide fine-grained permission settings, which ensure that only authorized entities can access and utilize the encrypted data. These settings protect the data from being viewed by unauthorized parties. In addition, our system generates an audit record of all data transactions, which improves both accountability and transparency. We have provided a comparative evaluation with the standard models, taking into account factors such as communication expense, transaction volume, and security. The findings of our experiments suggest that our strategy protects the confidentiality of the data while at the same time enabling effective data processing and analysis. In conclusion, the combination of homomorphic encryption and blockchain technology presents a solution that is both resilient and protective of users' privacy for healthcare applications integrated with IoT. This strategy offers a safe and open setting for the management and exchange of sensitive patient medical data, while simultaneously preserving the confidentiality of the patients involved.
    Matched MeSH terms: Computer Security
  2. Ali A, Ali H, Saeed A, Ahmed Khan A, Tin TT, Assam M, et al.
    Sensors (Basel), 2023 Sep 07;23(18).
    PMID: 37765797 DOI: 10.3390/s23187740
    The rapid advancements in technology have paved the way for innovative solutions in the healthcare domain, aiming to improve scalability and security while enhancing patient care. This abstract introduces a cutting-edge approach, leveraging blockchain technology and hybrid deep learning techniques to revolutionize healthcare systems. Blockchain technology provides a decentralized and transparent framework, enabling secure data storage, sharing, and access control. By integrating blockchain into healthcare systems, data integrity, privacy, and interoperability can be ensured while eliminating the reliance on centralized authorities. In conjunction with blockchain, hybrid deep learning techniques offer powerful capabilities for data analysis and decision making in healthcare. Combining the strengths of deep learning algorithms with traditional machine learning approaches, hybrid deep learning enables accurate and efficient processing of complex healthcare data, including medical records, images, and sensor data. This research proposes a permissions-based blockchain framework for scalable and secure healthcare systems, integrating hybrid deep learning models. The framework ensures that only authorized entities can access and modify sensitive health information, preserving patient privacy while facilitating seamless data sharing and collaboration among healthcare providers. Additionally, the hybrid deep learning models enable real-time analysis of large-scale healthcare data, facilitating timely diagnosis, treatment recommendations, and disease prediction. The integration of blockchain and hybrid deep learning presents numerous benefits, including enhanced scalability, improved security, interoperability, and informed decision making in healthcare systems. However, challenges such as computational complexity, regulatory compliance, and ethical considerations need to be addressed for successful implementation. By harnessing the potential of blockchain and hybrid deep learning, healthcare systems can overcome traditional limitations, promoting efficient and secure data management, personalized patient care, and advancements in medical research. The proposed framework lays the foundation for a future healthcare ecosystem that prioritizes scalability, security, and improved patient outcomes.
    Matched MeSH terms: Computer Security
  3. Zhang B, Rahmatullah B, Wang SL, Almutairi HM, Xiao Y, Liu X, et al.
    Med Biol Eng Comput, 2023 Nov;61(11):2971-3002.
    PMID: 37542682 DOI: 10.1007/s11517-023-02874-3
    Since the COVID-19 pandemic, telemedicine or non-face-to-face medicine has increased significantly. In practice, various types of medical images are essential to achieve effective telemedicine. Medical image encryption algorithms play an irreplaceable role in the fast and secure transmission and storage of these medical images. However, most of the existing medical image encryption algorithms are full encryption algorithms, which are inefficient and time-consuming, so they are not suitable for emergency medical scenarios. To improve the efficiency of encryption, a small number of works have focused on partial or selective encryption algorithms for medical images, in which different levels of encryption strategies were adopted for different information content regions of medical images. However, these encryption algorithms have inadequate security more or less. In this paper, based on the Logistic map, we designed an improved variable dimension map. Then, an encryption algorithm for medical images was proposed based on it. This algorithm has two modes: (1) full encryption mode and (2) semi-full encryption mode, which can better adapt to different medical scenarios, respectively. In full encryption mode, all pixels of medical images are encrypted by using the confusion-diffusion structure. In semi-full encryption mode, the region of interest of medical images is extracted. The confusion was first adopted to encrypt the region of interest, and then, the diffusion was adopted to encrypt the entire image. In addition, no matter which encryption mode is used, the algorithm provides the function of medical image integrity verification. The proposed algorithm was simulated and analyzed to evaluate its effectiveness. The results show that in semi-full encryption mode, the algorithm has good security performance and lower time consumption; while in full encryption mode, the algorithm has better security performance and is acceptable in time.
    Matched MeSH terms: Computer Security*
  4. Schröder M, Muller SHA, Vradi E, Mielke J, Lim YMF, Couvelard F, et al.
    Big Data, 2023 Dec;11(6):399-407.
    PMID: 37889577 DOI: 10.1089/big.2022.0178
    Sharing individual patient data (IPD) is a simple concept but complex to achieve due to data privacy and data security concerns, underdeveloped guidelines, and legal barriers. Sharing IPD is additionally difficult in big data-driven collaborations such as Bigdata@Heart in the Innovative Medicines Initiative, due to competing interests between diverse consortium members. One project within BigData@Heart, case study 1, needed to pool data from seven heterogeneous data sets: five randomized controlled trials from three different industry partners, and two disease registries. Sharing IPD was not considered feasible due to legal requirements and the sensitive medical nature of these data. In addition, harmonizing the data sets for a federated data analysis was difficult due to capacity constraints and the heterogeneity of the data sets. An alternative option was to share summary statistics through contingency tables. Here it is demonstrated that this method along with anonymization methods to ensure patient anonymity had minimal loss of information. Although sharing IPD should continue to be encouraged and strived for, our approach achieved a good balance between data transparency while protecting patient privacy. It also allowed a successful collaboration between industry and academia.
    Matched MeSH terms: Computer Security
  5. Almazroi AA, Alqarni MA, Al-Shareeda MA, Manickam S
    PLoS One, 2023;18(10):e0292690.
    PMID: 37889892 DOI: 10.1371/journal.pone.0292690
    The role that vehicular fog computing based on the Fifth Generation (5G) can play in improving traffic management and motorist safety is growing quickly. The use of wireless technology within a vehicle raises issues of confidentiality and safety. Such concerns are optimal targets for conditional privacy-preserving authentication (CPPA) methods. However, current CPPA-based systems face a challenge when subjected to attacks from quantum computers. Because of the need for security and anti-piracy features in fog computing when using a 5G-enabled vehicle system, the L-CPPA scheme is proposed in this article. Using a fog server, secret keys are generated and transmitted to each registered car via a 5G-Base Station (5G-BS) in the proposed L-CPPA system. In the proposed L-CPPA method, the trusted authority, rather than the vehicle's Onboard Unit (OBU), stores the vehicle's master secret data to each fog server. Finally, the computation cost of the suggested L-CPPA system regards message signing, single verification and batch verification is 694.161 ms, 60.118 ms, and 1348.218 ms, respectively. Meanwhile, the communication cost is 7757 bytes.
    Matched MeSH terms: Computer Security
  6. Almazroi AA, Aldhahri EA, Al-Shareeda MA, Manickam S
    PLoS One, 2023;18(6):e0287291.
    PMID: 37352258 DOI: 10.1371/journal.pone.0287291
    Fifth-generation (5G)-enabled vehicular fog computing technologies have always been at the forefront of innovation because they support smart transport like the sharing of traffic data and cooperative processing in the urban fabric. Nevertheless, the most important factors limiting progress are concerns over message protection and safety. To cope with these challenges, several scholars have proposed certificateless authentication schemes with pseudonyms and traceability. These schemes avoid complicated management of certificate and escrow of key in the public key infrastructure-based approaches in the identity-based approaches, respectively. Nevertheless, problems such as high communication costs, security holes, and computational complexity still exist. Therefore, this paper proposes an efficient certificateless authentication called the ECA-VFog scheme for fog computing with 5G-assisted vehicular systems. The proposed ECA-VFog scheme applied efficient operations based on elliptic curve cryptography that is supported by a fog server through a 5G-base station. This work conducts a safety analysis of the security designs to analysis the viability and value of the proposed ECA-VFog scheme. In the performance ovulation section, the computation costs for signing and verification process are 2.3539 ms and 1.5752 ms, respectively. While, the communication costs and energy consumption overhead of the ECA-VFog are 124 bytes and 25.610432 mJ, respectively. Moreover, comparing the ECA-VFog scheme to other existing schemes, the performance estimation reveals that it is more cost-effective with regard to computation cost, communication cost, and energy consumption.
    Matched MeSH terms: Computer Security*
  7. Abbasi IA, Jan SU, Alqahtani AS, Khan AS, Algarni F
    PLoS One, 2024;19(1):e0294429.
    PMID: 38289970 DOI: 10.1371/journal.pone.0294429
    Cloud computing is vital in various applications, such as healthcare, transportation, governance, and mobile computing. When using a public cloud server, it is mandatory to be secured from all known threats because a minor attacker's disturbance severely threatens the whole system. A public cloud server is posed with numerous threats; an adversary can easily enter the server to access sensitive information, especially for the healthcare industry, which offers services to patients, researchers, labs, and hospitals in a flexible way with minimal operational costs. It is challenging to make it a reliable system and ensure the privacy and security of a cloud-enabled healthcare system. In this regard, numerous security mechanisms have been proposed in past decades. These protocols either suffer from replay attacks, are completed in three to four round trips or have maximum computation, which means the security doesn't balance with performance. Thus, this work uses a fuzzy extractor method to propose a robust security method for a cloud-enabled healthcare system based on Elliptic Curve Cryptography (ECC). The proposed scheme's security analysis has been examined formally with BAN logic, ROM and ProVerif and informally using pragmatic illustration and different attacks' discussions. The proposed security mechanism is analyzed in terms of communication and computation costs. Upon comparing the proposed protocol with prior work, it has been demonstrated that our scheme is 33.91% better in communication costs and 35.39% superior to its competitors in computation costs.
    Matched MeSH terms: Computer Security
  8. Haddad A, Habaebi MH, Elsheikh EAA, Islam MR, Zabidi SA, Suliman FEM
    PLoS One, 2024;19(4):e0301371.
    PMID: 38557695 DOI: 10.1371/journal.pone.0301371
    To secure sensitive medical records in the healthcare clouds, this paper proposes an End-to-End Encryption (E2EE) to enhance a patient-centric blockchain-based system for electronic health record (EHR) management. The suggested system with a focus on the patient enables individuals to oversee their medical records within various involved parties by authorizing or withdrawing permission for access to their records. Utilizing the inter-planetary file system (IPFS) for record storage is chosen due to its decentralized nature and its ability to guarantee the unchangeability of records. Then an E2EE enhancement maintains the medical data integrity using dual level-Hybrid encryption: symmetric Advanced Encryption Standard (AES) and asymmetric Elliptic Curve Cryptography (ECC) cryptographic techniques. The proposed system is implemented using the Ethereum blockchain system for EHR data sharing and integration utilizing a web-based interface for the patient and all users to initiate the EHR sharing transactions over the IPFS cloud. The proposed system performance is evaluated in a working system prototype. For different file sizes between 512 KB to 100 MB, the performance metrics used to evaluate the proposed system were the time consumed for generating key, encryption, and decryption. The results demonstrate the proposed system's superiority over other cutting-edge systems and its practical ability to share secure health data in cloud environments.
    Matched MeSH terms: Computer Security
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links