Displaying publications 81 - 100 of 319 in total

Abstract:
Sort:
  1. Mohd Nor MN, Sabaratnam V, Tan GYA
    Int J Syst Evol Microbiol, 2017 Apr;67(4):851-855.
    PMID: 27902276 DOI: 10.1099/ijsem.0.001683
    A bacterial isolate, designated strain S37T, was isolated from the rhizosphere of oil palm (Elaeis guineensis). Strain S37T was found to be Gram-stain-negative, aerobic, motile and rod shaped. Based on 16S rRNA gene sequence analysis, strain S37T was most closely related to Devosia albogilva IPL15T (97.3 %), Devosia chinhatensis IPL18T (96.8 %) and Devosia subaequoris HST3-14T (96.5 %). The G+C content of the genomic DNA was 63.0 mol%, and dominant cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), 11-methyl C18 : 1ω7c and C16 : 0. The predominant isoprenoid quinone was ubiquinone-10 (Q-10), and the major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, glycolipid and phospholipids. Based on the polyphasic taxonomic data, it is clear that strain S37T represents a novel species of the genus Devosia within the family Hyphomicrobiaceae, for which we propose the name Devosia elaeis sp. nov., with strain S37T (=TBRC 5145T=LMG 29420T) as the type strain.
    Matched MeSH terms: DNA, Bacterial/genetics
  2. See-Too WS, Ee R, Madhaiyan M, Kwon SW, Tan JY, Lim YL, et al.
    Int J Syst Evol Microbiol, 2017 Apr;67(4):944-950.
    PMID: 27959786 DOI: 10.1099/ijsem.0.001721
    A taxonomic study was performed on a novel Gram-stain-positive, coccus-shaped, orange-pigmented motile bacterium, designated as strain L10.15T. The organism was isolated from a soil sample collected in Lagoon Island (close to Adelaide Island, western Antarctic Peninsula) using a quorum-quenching enrichment medium. Growth occurred at 4-30 °C, pH 6-11 and at moderately high salinity (0-15 %, w/v, NaCl), with optimal growth at 26 °C, at pH 7-8 and with 6 % (w/v) NaCl. 16S rRNA gene sequence analysis showed that strain L10.15T belonged to the genus Planococcus and was closely related to Planococcus halocryophilus Or1T (99.3 % similarity), Planococcus donghaensis JH1T (99.0 %), Planococcus antarcticus DSM 14505T (98.3 %), Planococcus plakortidis AS/ASP6 (II)T (97.6 %), Planococcus maritimus TF-9T (97.5 %), Planococcus salinarum ISL-6T (97.5 %) and Planococcus kocurii NCIMB 629T (97.5 %). However, the average nucleotide identity-MUMmer analysis showed low genomic relatedness values of 71.1-81.7 % to the type strains of these closely related species of the genus Planococcus. The principal fatty acids were anteiso-C15 : 0, C16 : 1ω7c and anteiso-C17 :  0, and the major menaquinones of strain L10.15T were MK-5 (48 %), MK-6 (6 %) and MK-7 (44 %). Polar lipid analysis revealed the presence of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and aminophospholipid. The DNA G+C content was 39.4 mol%. The phenotypic and genotypic data indicate that strain L10.15T represents a novel species of the genus Planococcus, for which the name Planococcus versutus sp. nov. is proposed. The type strain is L10.15T (=DSM 101994T=KACC 18918T).
    Matched MeSH terms: DNA, Bacterial/genetics
  3. Furusawa G, Lau NS, Suganthi A, Amirul AA
    Microbiologyopen, 2017 02;6(1).
    PMID: 27987272 DOI: 10.1002/mbo3.405
    The agarolytic bacterium Persicobacter sp. CCB-QB2 was isolated from seaweed (genus Ulva) collected from a coastal area of Malaysia. Here, we report a high-quality draft genome sequence for QB2. The Rapid Annotation using Subsystem Technology (RAST) annotation server identified four β-agarases (PdAgaA, PdAgaB, PdAgaC, and PdAgaD) as well as galK, galE, and phosphoglucomutase, which are related to the Leloir pathway. Interestingly, QB2 exhibited a diauxic growth in the presence of two kinds of nutrients, such as tryptone and agar. In cells grown with agar, the profiles of agarase activity and growth rate were very similar. galK, galE, and phosphoglucomutase genes were highly expressed in the second growth phase of diauxic growth, indicating that QB2 cells use galactose hydrolyzed from agar by its agarases and exhibit nutrient prioritization. This is the first report describing diauxic growth for agarolytic bacteria. QB2 is a potential novel model organism for studying diauxic growth in environmental bacteria.
    Matched MeSH terms: DNA, Bacterial/genetics
  4. Chewapreecha C, Holden MT, Vehkala M, Välimäki N, Yang Z, Harris SR, et al.
    Nat Microbiol, 2017 Jan 23;2:16263.
    PMID: 28112723 DOI: 10.1038/nmicrobiol.2016.263
    The environmental bacterium Burkholderia pseudomallei causes an estimated 165,000 cases of human melioidosis per year worldwide and is also classified as a biothreat agent. We used whole genome sequences of 469 B. pseudomallei isolates from 30 countries collected over 79 years to explore its geographic transmission. Our data point to Australia as an early reservoir, with transmission to Southeast Asia followed by onward transmission to South Asia and East Asia. Repeated reintroductions were observed within the Malay Peninsula and between countries bordered by the Mekong River. Our data support an African origin of the Central and South American isolates with introduction of B. pseudomallei into the Americas between 1650 and 1850, providing a temporal link with the slave trade. We also identified geographically distinct genes/variants in Australasian or Southeast Asian isolates alone, with virulence-associated genes being among those over-represented. This provides a potential explanation for clinical manifestations of melioidosis that are geographically restricted.
    Matched MeSH terms: DNA, Bacterial/genetics
  5. Low KF, Zain ZM, Yean CY
    Biosens Bioelectron, 2017 Jan 15;87:256-263.
    PMID: 27567251 DOI: 10.1016/j.bios.2016.08.064
    A novel enzyme/nanoparticle-based DNA biosensing platform with dual colorimetric/electrochemical approach has been developed for the sequence-specific detection of the bacterium Vibrio cholerae, the causative agent of acute diarrheal disease in cholera. This assay platform exploits the use of shelf-stable and ready-to-use (shelf-ready) reagents to greatly simplify the bioanalysis procedures, allowing the assay platform to be more amenable to point-of-care applications. To assure maximum diagnosis reliability, an internal control (IC) capable of providing instant validation of results was incorporated into the assay. The microbial target, single-stranded DNA amplified with asymmetric PCR, was quantitatively detected via electrochemical stripping analysis of gold nanoparticle-loaded latex microspheres as a signal-amplified hybridization tag, while the incorporated IC was analyzed using a simplified horseradish peroxidase enzyme-based colorimetric scheme by simple visual observation of enzymatic color development. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 145 clinical isolate-spiked fecal specimens. The limits of detection were 0.5ng/ml of genomic DNA and 10 colony-forming units (CFU)/ml of bacterial cells with dynamic ranges of 0-100ng/ml (R(2)=0.992) and log10 (1-10(4) CFU/ml) (R(2)=0.9918), respectively. An accelerated stability test revealed that the assay reagents were stable at temperatures of 4-37°C, with an estimated ambient shelf life of 200 days. The versatility of the biosensing platform makes it easily adaptable for quantitative detection of other microbial pathogens.
    Matched MeSH terms: DNA, Bacterial/genetics
  6. Hegedűs B, Kós PB, Bálint B, Maróti G, Gan HM, Perei K, et al.
    J Biotechnol, 2017 Jan 10;241:76-80.
    PMID: 27851894 DOI: 10.1016/j.jbiotec.2016.11.013
    Sulfanilic acid (4-aminobenzenesulfonic acid) is a sulfonated aromatic amine widely used in chemical industries for synthesis of various organic dyes and sulfa drugs. There are quite a few microbial co-cultures or single isolates capable of completely degrading this compound. Novosphingobium resinovorum SA1 was the first single bacterium which could utilize sulfanilic acid as its sole carbon, nitrogen and sulfur source. The strain has versatile catabolic routes for the bioconversion of numerous other aromatic compounds. Here, the complete genome sequence of the N. resinovorum SA1 strain is reported. The genome consists of a circular chromosome of 3.8 Mbp and four extrachromosomal elements between 67 and 1 759.8 kbp in size. Three alternative 3-ketoadipate pathways were identified on the plasmids. Sulfanilic acid is decomposed via a modified 3-ketoadipate pathway and the oxygenases involved form a phylogenetically separate branch on the tree. Sequence analysis of these elements might provide a genetic background for deeper insight into the versatile catabolic metabolism of various aromatic xenobiotics, including sulfanilic acid and its derivatives. Moreover, this is also a good model strain for understanding the role and evolution of multiple genetic elements within a single strain.
    Matched MeSH terms: DNA, Bacterial/genetics
  7. Dinesh B, Furusawa G, Amirul AA
    Arch Microbiol, 2017 Jan;199(1):63-67.
    PMID: 27506901 DOI: 10.1007/s00203-016-1275-8
    A Gram-staining-negative, aerobic, rod-shaped, yellow-orange-pigmented, gliding bacterium, designated as strain ST2L12(T), was isolated from estuarine mangrove sediment from Matang Mangrove Forest, Perak, Malaysia. Strain ST2L12(T) grew at 15-39 °C, pH 6-8 and in 1-6 % (w/v) NaCl. This strain was able to degrade xylan and casein. 16S rRNA gene sequence analysis showed 95.3-92.8 % similarity to members of the genera Mangrovimonas, Meridianimaribacter, Sediminibacter, Gaetbulibacter and Hoppeia. Phylogenetic analysis indicated that it belonged to the family Flavobacteriaceae. Respiratory quinone present was menaquinone-6 (MK-6), and the DNA G+C content was 38.3 mol%. The predominant fatty acids were iso-C15:0, iso-C15:1, C15:0 and iso-C17:0 3-OH. Moreover, previous genome comparison study showed that the genome of ST2L12(T) is 1.4 times larger compared to its closest relative, Mangrovimonas yunxiaonensis LYYY01(T). Phenotypic, fatty acid, 16S rRNA gene sequence and previous genome data indicate that strain ST2L12(T) represents a novel species of the genus Mangrovimonas in the family Flavobacteriaceae, for which the name Mangrovimonas xylaniphaga sp. nov. is proposed. The type strain of Mangrovimonas xylaniphaga is ST2L12(T) (=LMG 28914(T)=JCM 30880(T)).
    Matched MeSH terms: DNA, Bacterial/genetics
  8. Nordin N, Yusof NA, Abdullah J, Radu S, Hushiarian R
    Biosens Bioelectron, 2016 Dec 15;86:398-405.
    PMID: 27414245 DOI: 10.1016/j.bios.2016.06.077
    A simple but promising electrochemical DNA nanosensor was designed, constructed and applied to differentiate a few food-borne pathogens. The DNA probe was initially designed to have a complementary region in Vibrio parahaemolyticus (VP) genome and to make different hybridization patterns with other selected pathogens. The sensor was based on a screen printed carbon electrode (SPCE) modified with polylactide-stabilized gold nanoparticles (PLA-AuNPs) and methylene blue (MB) was employed as the redox indicator binding better to single-stranded DNA. The immobilization and hybridization events were assessed using differential pulse voltammetry (DPV). The fabricated biosensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0×10(-9)-2.0×10(-13)M with a detection limit of 5.3×10(-12)M. The relative standard deviation for 6 replications of DPV measurement of 0.2µM complementary DNA was 4.88%. The fabricated DNA biosensor was considered stable and portable as indicated by a recovery of more than 80% after a storage period of 6 months at 4-45°C. Cross-reactivity studies against various food-borne pathogens showed a reliably sensitive detection of VP.
    Matched MeSH terms: DNA, Bacterial/genetics
  9. Marziah Z, Mahdzir A, Musa MN, Jaafar AB, Azhim A, Hara H
    Microbiologyopen, 2016 12;5(6):967-978.
    PMID: 27256005 DOI: 10.1002/mbo3.380
    This study for the first time provides insight into the bacterial community in the benthic region of the Off-Terengganu Coastline, which is considered to be anthropogenically polluted due to heavy fishing vessel commotion. Subsurface bacteria were randomly collected from two locations at different depths and were examined using the 16S rDNA V3-V4 marker gene on the Illumina™ Miseq platform. In addition, the physiochemical parameters of the sediment were also measured. Surprisingly, the results show a high diversity of sulfur-oxidizing bacteria in the surveyed area, where Sulfurovum sp. was identified to predominate the overall bacterial community. The physiochemical parameters reveal insufficient evidence of hydrothermal vents in the surveyed area. However, there are traces of hydrocarbon pollutants such as gasoline, diesel, and mineral oil in this area. It is assumed that sediment accumulation in the lee of breakwater plays an important role in trapping the runoff from the nearby harbor, which includes oil spills. Based on the common knowledge, Sulvurofum sp. is a native bacterium that exists in deep hydrothermal vents and volcanic territories. Although the reason for the abundance of Sulfurovum sp. in the surveyed area is still unclear, there is a possibility that metabolic adaptation plays an important role in regulating hydrocarbon pollutants for survival. The work presented in this paper therefore has profound implications for future studies on Sulfurovum sp. versatility. However, future research is needed to strengthen the findings of this study and to provide a better evidence regarding the metabolic response of this bacterium toward hydrocarbon pollutants.
    Matched MeSH terms: DNA, Bacterial/genetics
  10. Khoo JJ, Lim FS, Chen F, Phoon WH, Khor CS, Pike BL, et al.
    Vector Borne Zoonotic Dis, 2016 12;16(12):744-751.
    PMID: 27763821
    Recent studies have shown that ticks harbor Coxiella-like bacteria, which are potentially tick-specific endosymbionts. We recently described the detection of Coxiella-like bacteria and possibly Coxiella burnetii in ticks found from rural areas in Malaysia. In the present study, we collected ticks, including Haemaphysalis bispinosa, Haemaphysalis hystricis, Dermacentor compactus, Dermacentor steini, and Amblyomma sp. from wildlife and domesticated goats from four different locations in Malaysia. Coxiella 16s rRNA genomic sequences were detected by PCR in 89% of ticks tested. Similarity analysis and phylogenetic analyses of the 16s rRNA and rpoB partial sequences were performed for 10 representative samples selected based on the tick species, sex, and location. The findings here suggested the presence of C. burnetii in two samples, each from D. steini and H. hystricis. The sequences of both samples clustered with published C. burnetii sequences. The remaining eight tick samples were shown to harbor 16s rRNA sequences of Coxiella-like bacteria, which clustered phylogenetically according to the respective tick host species. The findings presented here added to the growing evidence of the association between Coxiella-like bacteria and ticks across species and geographical boundaries. The importance of C. burnetii found in ticks in Malaysia warrants further investigation.
    Matched MeSH terms: DNA, Bacterial/genetics
  11. Selvaratnam C, Thevarajoo S, Goh KM, Chan KG, Chong CS
    Int J Syst Evol Microbiol, 2016 Dec;66(12):5537-5543.
    PMID: 28077207 DOI: 10.1099/ijsem.0.001553
    The genus Roseivirga currently includes five species: Roseivirga ehrenbergii, R. echinicomitans, R. spongicola, R. marina and R. maritima. Marinicola seohaensis SW-152T was renamed as Roseivirgaseohaensis SW-152T and then reclassified again as a later heterotypic synonym of R. ehrenbergii KMM 6017T. In this study, based on average nucleotide identity and digital DNA-DNA hybridization values obtained from in silico methods, together with fatty acid analyses and biochemical tests, we propose to reclassify R. ehrenbergii SW-152 as Roseivirga seohaensis comb. nov. (type strain SW-152T=KCTC 1231T=JCM 12600T). In this work, a Gram-negative, rod-shaped, aerobic and pink-pigmented strain designated as D-25T was isolated from seawater (Desaru Beach, Johor, Malaysia). The 16S rRNA gene analysis revealed that strain D-25T was related to the genus Roseivirga. Strain D-25T was found most closely related to R. seohaensis SW-152T based on average nucleotide identity and digital DNA-DNA hybridization values, phenotypic and chemotaxonomic analyses, indicating that these strains belong to the same species. Thus, it is proposed to split the species R.oseivirga seohaensis into two novel subspecies, Roseivirga seohaensissubsp. seohaensis subsp. nov. (type strain SW-152T=KCTC 12312T=JCM 12600T) and Roseivirga seohaensissubsp. aquiponti subsp. nov. (type strain D-25T=KCTC 42709T=DSM 101709T) and to emend the description of the genus Roseivirga.
    Matched MeSH terms: DNA, Bacterial/genetics
  12. Khayi S, Cigna J, Chong TM, Quêtu-Laurent A, Chan KG, Hélias V, et al.
    Int J Syst Evol Microbiol, 2016 Dec;66(12):5379-5383.
    PMID: 27692046 DOI: 10.1099/ijsem.0.001524
    Pectobacterium wasabiae was originally isolated from Japanese horseradish (Eutrema wasabi), but recently some Pectobacterium isolates collected from potato plants and tubers displaying blackleg and soft rot symptoms were also assigned to P. wasabiae. Here, combining genomic and phenotypical data, we re-evaluated their taxonomic position. PacBio and Illumina technologies were used to complete the genome sequences of P. wasabiae CFBP 3304T and RNS 08-42-1A. Multi-locus sequence analysis showed that the P. wasabiae strains RNS 08-42-1A, SCC3193, CFIA1002 and WPP163, which were collected from potato plant environment, constituted a separate clade from the original Japanese horseradish P. wasabiae. The taxonomic position of these strains was also supported by calculation of the in-silico DNA-DNA hybridization, genome average nucleotide indentity, alignment fraction and average nucleotide indentity values. In addition, they were phenotypically distinguished from P. wasabiae strains by producing acids from (+)-raffinose, α-d(+)-α-lactose, d(+)-galactose and (+)-melibiose but not from methyl α-d-glycopyranoside, (+)-maltose or malonic acid. The name Pectobacterium parmentieri sp. nov. is proposed for this taxon; the type strain is RNS 08-42-1AT (=CFBP 8475T=LMG 29774T).
    Matched MeSH terms: DNA, Bacterial/genetics
  13. Loong SK, Khor CS, Jafar FL, AbuBakar S
    J Clin Lab Anal, 2016 Nov;30(6):1056-1060.
    PMID: 27184222 DOI: 10.1002/jcla.21980
    BACKGROUND: Phenotypic identification systems are established methods for laboratory identification of bacteria causing human infections. Here, the utility of phenotypic identification systems was compared against 16S rDNA identification method on clinical isolates obtained during a 5-year study period, with special emphasis on isolates that gave unsatisfactory identification.

    METHODS: One hundred and eighty-seven clinical bacteria isolates were tested with commercial phenotypic identification systems and 16S rDNA sequencing. Isolate identities determined using phenotypic identification systems and 16S rDNA sequencing were compared for similarity at genus and species level, with 16S rDNA sequencing as the reference method.

    RESULTS: Phenotypic identification systems identified ~46% (86/187) of the isolates with identity similar to that identified using 16S rDNA sequencing. Approximately 39% (73/187) and ~15% (28/187) of the isolates showed different genus identity and could not be identified using the phenotypic identification systems, respectively. Both methods succeeded in determining the species identities of 55 isolates; however, only ~69% (38/55) of the isolates matched at species level. 16S rDNA sequencing could not determine the species of ~20% (37/187) of the isolates.

    CONCLUSION: The 16S rDNA sequencing is a useful method over the phenotypic identification systems for the identification of rare and difficult to identify bacteria species. The 16S rDNA sequencing method, however, does have limitation for species-level identification of some bacteria highlighting the need for better bacterial pathogen identification tools.

    Matched MeSH terms: DNA, Bacterial/genetics*
  14. Cao Z, Liang JB, Liao XD, Wright AD, Wu YB, Yu B
    Animal, 2016 Oct;10(10):1666-76.
    PMID: 27052363 DOI: 10.1017/S1751731116000525
    The primary objective of this study was to investigate the effect of dietary fiber on methanogenic diversity and community composition in the hindgut of indigenous Chinese Lantang gilts to explain the unexpected findings reported earlier that Lantang gilts fed low-fiber diet (LFD) produced more methane than those fed high-fiber diet (HFD). In total, 12 Lantang gilts (58.7±0.37 kg) were randomly divided into two dietary groups (six replicates (pigs) per group) and fed either LFD (NDF=201.46 g/kg) or HFD (NDF=329.70 g/kg). Wheat bran was the main source of fiber for the LFD, whereas ground rice hull (mixture of rice hull and rice bran) was used for the HFD. Results showed that the methanogens in the hindgut of Lantang gilts belonged to four known species (Methanobrevibacter ruminantium, Methanobrevibacter wolinii, Methanosphaera stadtmanae and Methanobrevibacter smithii), with about 89% of the methanogens belonging to the genus Methanobrevibacter. The 16S ribosomal RNA (rRNA) gene copies of Methanobrevibacter were more than three times higher (P0.05) was observed in 16S rRNA gene copies of Fibrobacter succinogenes between the two dietary groups, and 18S rRNA gene copies of anaerobic fungi in gilts fed LFD were lower than (P<0.05) those fed HFD. To better explain the effect of different fiber source on the methanogen community, a follow-up in vitro fermentation using a factorial design comprised of two inocula (prepared from hindgut content of gilts fed two diets differing in their dietary fiber)×four substrates (LFD, HFD, wheat bran, ground rice hull) was conducted. Results of the in vitro fermentation confirmed that the predominant methanogens belonged to the genus of Methanobrevibacter, and about 23% methanogens was found to be distantly related (90%) to Thermogymnomonas acidicola. In vitro fermentation also seems to suggest that fiber source did change the methanogens community. Although the density of Methanobrevibacter species was positively correlated with CH4 production in both in vivo (P<0.01, r=0.737) and in vitro trials (P<0.05, r=0.854), which could partly explain the higher methane production from gilts fed LFD compared with those in the HFD group. Further investigation is needed to explain how the rice hull affected the methanogens and inhibited CH4 emission from gilts fed HFD.
    Matched MeSH terms: DNA, Bacterial/genetics
  15. Thevarajoo S, Selvaratnam C, Goh KM, Hong KW, Chan XY, Chan KG, et al.
    Int J Syst Evol Microbiol, 2016 Sep;66(9):3662-3668.
    PMID: 27334651 DOI: 10.1099/ijsem.0.001248
    A Gram-staining-negative, aerobic, yellow-orange-pigmented, rod-shaped bacterium designated D-24T was isolated from seawater from sandy shoreline in Johor, Malaysia. The 16S rRNA gene sequence analysis revealed that strain D-24T is affiliated with the genus Vitellibacter. It shared more than 96 % sequence similarity with the types of some of the validly published species of the genus: Vitellibactervladivostokensis KMM 3516T (99.5 %), Vitellibactersoesokkakensis RSSK-12T (97.3 %), VitellibacterechinoideorumCC-CZW007T (96.9 %), VitellibacternionensisVBW088T (96.7 %) and Vitellibacteraestuarii JCM 15496T (96.3 %). DNA-DNA hybridization and genome-based analysis of average nucleotide identity (ANI) of strain D-24T versus V.vladivostokensisKMM 3516T exhibited values of 35.9±0.14 % and 89.26 %, respectively. Strain D-24T showed an even lower ANI value of 80.88 % with V. soesokkakensis RSSK-12T. The major menaquinone of strain D-24T was MK-6, and the predominant fatty acids were iso-C15 : 0 and iso-C17 : 0 3-OH. Strain D-24T contained major amounts of phosphatidylethanolamine, two lipids and two aminolipids, and a phosphoglycolipid that was different to that of other species of the genus Vitellibacter. The genomic DNA G+C content was 40.6 mol%. On the basis of phenotypic properties, DNA-DNA relatedness, ANI value and chemotaxonomic analyses, strain D-24T represents a novel species of the genus Vitellibacter, for which the name Vitellibacter aquimaris sp. nov. is proposed. The type strain is D-24T (=KCTC 42708T=DSM 101732T).
    Matched MeSH terms: DNA, Bacterial/genetics
  16. Chen X, Li QY, Li GD, Xu FJ, Jiang Y, Han L, et al.
    Antonie Van Leeuwenhoek, 2016 Sep;109(9):1177-83.
    PMID: 27260265 DOI: 10.1007/s10482-016-0718-1
    A novel aerobic, non-motile, Gram-positive, rod-shaped actinobacterium, designated YIM 100951(T), was isolated from the faeces of civets (Viverra zibetha) living in the National Nature Protect Region in Selangor, Malaysia. Strain YIM 100951(T) shows high similarities with Microbacterium barkeri DSM 20145(T) (97.6 %), Microbacterium oryzae MB10(T) (97.3 %), Microbacterium lemovicicum ViU22(T) (97.1 %) and Microbacterium indicum BBH6(T) (97.0 %) based on their 16S rRNA genes. However, phylogenetic analysis showed that strain YIM 100951(T) formed a clade with Microbacterium halotolerans YIM 70130(T) (96.7 %), Microbacterium populi 10-107-8(T) (96.7 %) and Microbacterium sediminis YLB-01(T) (96.9 %). DNA-DNA hybridization was carried out between strains YIM 100951(T) and M. barkeri DSM 20145(T), the result showed a value of 23.2 ± 4.5 %. In addition, some of the physiological, biochemical and chemotaxonomic characteristics of strain YIM 100951(T) are different from the closely related strains. Thus, we suggest that strain YIM 100951(T) represents a novel species of the genus Microbacterium, for which the name Microbacterium gilvum sp. nov. is proposed. The type strain is YIM 100951(T) (=DSM 26235(T) = CCTCC AB 2012971(T)).
    Matched MeSH terms: DNA, Bacterial/genetics
  17. Lai YM, Zaw MT, Shamsudin SB, Lin Z
    J Microbiol Immunol Infect, 2016 Aug;49(4):591-4.
    PMID: 26212311 DOI: 10.1016/j.jmii.2015.06.002
    The putative pathogenicity island (PAI) containing the uropathogenic specific protein (usp) gene and three small open reading frames (orfU1, orfU2, and orfU3) encoding 98, 97, and 96 amino acid proteins is widely distributed among uropathogenic Escherichia coli (UPEC) strains. This PAI was designated as PAIusp. Sequencing analysis of PAIusp has revealed that the usp gene can be divided into two types - uspI and uspII - based on sequence variation at the 3' terminal region and the number and position of orfUs differ from strain to strain. Based on usp gene types and orfU sequential patterns, PAIusp can be divided into four subtypes. Subtyping of PAIusp is a useful method to characterize UPEC strains. In this study, we developed a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to differentiate usp gene types. This method could correctly identify the usp gene type in usp-positive UPEC strains in our laboratory.
    Matched MeSH terms: DNA, Bacterial/genetics
  18. Kerfahi D, Tripathi BM, Dong K, Go R, Adams JM
    Microb Ecol, 2016 08;72(2):359-71.
    PMID: 27221090 DOI: 10.1007/s00248-016-0790-0
    Large areas of rainforest in Asia have been converted to plantations, with uncertain effects on soil biodiversity. Using standard metagenetic methods, we compared the soil biota of bacteria, fungi, and nematodes at three rainforest sites in Malaysia with two rubber plantation sites with similar soils and geology. We predicted the following: (1) that the rubber sites would have a lower α- and β-diversity than the rainforest sites, due to the monospecific canopy cover and intensive management with herbicides, pesticides, and fertilizers, and (2) that due to differences in the physical and biotic environment associated with cultivation, there would be distinct communities of bacteria, fungi, and nematodes. However, regarding (1), the results showed no consistent difference in α- and β-diversity of bacteria, fungi, or nematodes between rainforest and rubber plantation sites. It appears that conversion of rainforest to rubber plantations does not necessarily result in a decrease in diversity of soil biota. It may be that heterogeneity associated with the cultivation regimen compensates for loss of biotically imposed heterogeneity of the original rainforest. Regarding (2), as predicted there were statistically significant differences in community composition between rainforest and rubber plantation for bacteria, fungi, and nematodes. These differences could be related to a range of factors including light level, litter fall composition, pH, C and N, selecting a distinct set of soil taxa, and it is possible that this in itself would affect long-term soil function.
    Matched MeSH terms: DNA, Bacterial/genetics
  19. Khoo JJ, Chen F, Kho KL, Ahmad Shanizza AI, Lim FS, Tan KK, et al.
    Ticks Tick Borne Dis, 2016 07;7(5):929-937.
    PMID: 27132518 DOI: 10.1016/j.ttbdis.2016.04.013
    Ticks are vectors in the transmission of many important infectious diseases in human and animals. Ticks can be readily found in the semi-forested areas such as the settlements of the indigenous people in Malaysia, the Orang Asli. There is still minimal information available on the bacterial agents associated with ticks found in Malaysia. We performed a survey of the bacterial communities associated with ticks collected from domestic animals found in two Orang Asli villages in Malaysia. We collected 62 ticks, microscopically and molecularly identified as related to Haemaphysalis wellingtoni, Haemaphysalis hystricis and Haemaphysalis bispinosa. Bacterial 16s rRNA hypervariable region (V6) amplicon libraries prepared from the tick samples were sequenced on the Ion Torrent PGM platform. We detected a total of 392 possible bacterial genera after pooling and sequencing 20 samples, indicating a diverse bacterial community profile. Dominant taxa include the potential tick endosymbiont, Coxiella. Other dominant taxa include the tick-associated pathogen, Rickettsia, and environmental bacteria such as Bacillus, Mycobacterium, Sphingomonas and Pseudomonas. Other known tick-associated bacteria were also detected, including Anaplasma, Ehrlichia, Rickettsiella and Wolbachia, albeit at very low abundance. Specific PCR was performed on selected samples to identify Rickettsia and Coxiella. Sequence of Rickettsia felis, which causes spotted fever in human and cats, was identified in one sample. Coxiella endosymbionts were detected in three samples. This study provides the baseline knowledge of the microbiome of ticks in Malaysia, focusing on tick-associated bacteria affecting the Orang Asli communities. The role of the herein found Coxiella and Rickettsia in tick physiology or disease transmission merits further investigation.
    Matched MeSH terms: DNA, Bacterial/genetics
  20. Tang SS, Carlin NI, Talukder KA, Cam PD, Verma NK
    BMC Microbiol, 2016 Jun 27;16(1):127.
    PMID: 27349637 DOI: 10.1186/s12866-016-0746-z
    BACKGROUND: Shigella spp. are the primary causative agents of bacillary dysentery. Since its emergence in the late 1980s, the S. flexneri serotype 1c remains poorly understood, particularly with regard to its origin and genetic evolution. This article provides a molecular insight into this novel serotype and the gtrIC gene cluster that determines its unique immune recognition.

    RESULTS: A PCR of the gtrIC cluster showed that serotype 1c isolates from different geographical origins were genetically conserved. An analysis of sequences flanking the gtrIC cluster revealed remnants of a prophage genome, in particular integrase and tRNA(Pro) genes. Meanwhile, Southern blot analyses on serotype 1c, 1a and 1b strains indicated that all the tested serotype 1c strains may have had a common origin that has since remained distinct from the closely related 1a and 1b serotypes. The identification of prophage genes upstream of the gtrIC cluster is consistent with the notion of bacteriophage-mediated integration of the gtrIC cluster into a pre-existing serotype.

    CONCLUSIONS: This is the first study to show that serotype 1c isolates from different geographical origins share an identical pattern of genetic arrangement, suggesting that serotype 1c strains may have originated from a single parental strain. Analysis of the sequence around the gtrIC cluster revealed a new site for the integration of the serotype converting phages of S. flexneri. Understanding the origin of new pathogenic serotypes and the molecular basis of serotype conversion in S. flexneri would provide information for developing cross-reactive Shigella vaccines.

    Matched MeSH terms: DNA, Bacterial/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links