Displaying publications 81 - 100 of 518 in total

Abstract:
Sort:
  1. Zhu T, Chong MN, Chan ES
    ChemSusChem, 2014 Nov;7(11):2974-97.
    PMID: 25274424 DOI: 10.1002/cssc.201402089
    The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future.
    Matched MeSH terms: Oxidation-Reduction
  2. Ihara H, Kasamatsu S, Kitamura A, Nishimura A, Tsutsuki H, Ida T, et al.
    Chem Res Toxicol, 2017 09 18;30(9):1673-1684.
    PMID: 28837763 DOI: 10.1021/acs.chemrestox.7b00120
    Electrophiles such as methylmercury (MeHg) affect cellular functions by covalent modification with endogenous thiols. Reactive persulfide species were recently reported to mediate antioxidant responses and redox signaling because of their strong nucleophilicity. In this study, we used MeHg as an environmental electrophile and found that exposure of cells to the exogenous electrophile elevated intracellular concentrations of the endogenous electrophilic molecule 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), accompanied by depletion of reactive persulfide species and 8-SH-cGMP which is a metabolite of 8-nitro-cGMP. Exposure to MeHg also induced S-guanylation and activation of H-Ras followed by injury to cerebellar granule neurons. The electrophile-induced activation of redox signaling and the consequent cell damage were attenuated by pretreatment with a reactive persulfide species donor. In conclusion, exogenous electrophiles such as MeHg with strong electrophilicity impair the redox signaling regulatory mechanism, particularly of intracellular reactive persulfide species and therefore lead to cellular pathogenesis. Our results suggest that reactive persulfide species may be potential therapeutic targets for attenuating cell injury by electrophiles.
    Matched MeSH terms: Oxidation-Reduction
  3. Hong FJ, Chong KW, Low YY, Thomas NF, Kam TS
    Chem Asian J, 2015 Oct;10(10):2207-20.
    PMID: 26097065 DOI: 10.1002/asia.201500488
    A systematic study on the FeCl3-induced oxidation of 1,2-diarylalkenes was carried out with the focus on the variation of product type as a function of aromatic substitution, as well as to compare the reactivity of stilbene cation radicals generated via Fe(III) oxidation with those generated by anodic oxidation. The aromatic substituents were found to fall into three main categories, namely those that give rise to tetralins and/or dehydrotetralins, those that give products possessing pallidol and ampelopsin F-type carbon skeletons, and last, those that give rise to trimeric products, indanes, and dehydrotetralins/tetralins. The latter are those stilbenes with a para-methoxy substituent in one ring and a para- or meta-EWG (CF3, NO2, Cl, F) in the other, and represent the most prominent departure when compared with the behavior of the same stilbenes under the conditions of anodic oxidation. Reaction pathways to rationalize the formation of the different products are presented.
    Matched MeSH terms: Oxidation-Reduction
  4. Tay KS, Rahman NA, Abas MR
    Chemosphere, 2010 Dec;81(11):1446-53.
    PMID: 20875662 DOI: 10.1016/j.chemosphere.2010.09.004
    This study investigated the reaction kinetics and degradation mechanism of parabens (methylparaben, ethylparaben, propylparaben and butylparaben) during ozonation. Experiments were performed at pH 2, 6 and 12 to determine the rate constants for the reaction of protonated, undissociated and dissociated paraben with ozone. The rate constants for the reaction of ozone with dissociated parabens (3.3 × 10(9)-4.2 × 10(9)M(-1)s(-1)) were found to be 10(4) times higher than the undissociated parabens (2.5 × 10(5)-4.4 × 10(5)M(-1)s(-1)) and 10(7) times higher than with the protonated parabens (1.02 × 10(2)-1.38 × 10(2)M(-1)s(-1)). The second-order rate constants for the reaction between parabens with hydroxyl radicals were found to vary from 6.8 × 10(9) to 9.2 × 10(9)M(-1)s(-1). Characterization of degradation by-products (DBPs) formed during the ozonation of each selected parabens has been carried out using GCMS after silylation. Twenty DBPs formed during ozonation of selected parabens have been identified. Hydroxylation has been found to be the major reaction for the formation of the identified DBPs. Through the hydroxylation reaction, a variety of hydroxylated parabens was formed.
    Matched MeSH terms: Oxidation-Reduction
  5. Cui M, Jang M, Kang K, Kim D, Snyder SA, Khim J
    Chemosphere, 2016 Feb;144:2081-90.
    PMID: 26583290 DOI: 10.1016/j.chemosphere.2015.10.107
    A novel and economic sequential process consisting of precipitation, adsorption, and oxidation was developed to remediate actual rare-earth (RE) wastewater containing various toxic pollutants, including radioactive species. In the precipitation step, porous air stones (PAS) containing waste oyster shell (WOS), PASWOS, was prepared and used to precipitate most heavy metals with >97% removal efficiencies. The SEM-EDS analysis revealed that PAS plays a key role in preventing the surface coating of precipitants on the surface of WOS and in releasing the dissolved species of WOS successively. For the adsorption step, a polyurethane (PU) impregnated by coal mine drainage sludge (CMDS), PUCMDS, was synthesized and applied to deplete fluoride (F), arsenic (As), uranium (U), and thorium (Th) that remained after precipitation. The continuous-mode sequential process using PAS(WOS), PU(CMDS), and ozone (O3) had 99.9-100% removal efficiencies of heavy metals, 99.3-99.9% of F and As, 95.8-99.4% of U and Th, and 92.4% of COD(Cr) for 100 days. The sequential process can treat RE wastewater economically and effectively without stirred-tank reactors, pH controller, continuous injection of chemicals, and significant sludge generation, as well as the quality of the outlet met the EPA recommended limits.
    Matched MeSH terms: Oxidation-Reduction
  6. Ang TN, Young BR, Burrell R, Taylor M, Aroua MK, Baroutian S
    Chemosphere, 2021 Feb;264(Pt 2):128535.
    PMID: 33045509 DOI: 10.1016/j.chemosphere.2020.128535
    The emission of waste anaesthetic gas is a growing contributor to global warming and remains a factor in atmospheric ozone depletion. Volatile anaesthetics in medical waste gases could be removed via adsorption using suitable activated carbon materials possessing an enhanced affinity to anaesthetic molecules. In this work, the effects of surface physical and chemical properties on sevoflurane adsorption were investigated by oxidative hydrothermal surface modification of a commercial activated carbon using only distilled water. The hydrothermal surface modification was carried out at different treatment temperatures (150-300 °C) for varying durations (10-30 min), and adsorption was conducted under fixed conditions (bed depth = 10 cm, inlet concentration = 528 mg/L, and flow rate = 3 L/min). The hydrothermal treatment generally increased the BET surface area of the activated carbons. At oxidation temperatures above 200 °C, the micropore volume of the samples diminished. The relative amount of surface oxygen was enriched as the treatment temperature increased. Treatment duration did not significantly affect the introduction of relative amount of surface oxygen, except at higher temperatures. There were no new types of functional groups introduced. However, disappearance and re-formation of oxygen functional groups containing C-O structures (as in hydroxyl and ether groups) occurred when treatment temperature was increased from 150 to 200 °C, and when treatments were conducted above 200 °C, respectively. The ester/acetal groups were enriched under the temperature range studied. The findings suggested that the re-formation of surface oxygen functionalities might lead to the development of functional groups that improve sevoflurane adsorption.
    Matched MeSH terms: Oxidation-Reduction
  7. Sharif HMA, Mahmood N, Wang S, Hussain I, Hou YN, Yang LH, et al.
    Chemosphere, 2021 Jun;273:129695.
    PMID: 33524756 DOI: 10.1016/j.chemosphere.2021.129695
    Recently, the discharge of flue gas has become a global issue due to the rapid development in industrial and anthropogenic activities. Various dry and wet treatment approaches including conventional and hybrid hybrid wet scrubbing have been employing to combat against these toxic exhaust emissions. However, certain issues i.e., large energy consumption, generation of secondary pollutants, low regeneration of scrubbing liquid and high efficieny are hindering their practical applications on industrial level. Despite this, the hybrid wet scrubbing technique (advanced oxidation, ionic-liquids and solid engineered interface hybrid materials based techniques) is gaining great attention because of its low installation costs, simultaneous removal of multi-air pollutants and low energy requirements. However, the lack of understanding about the basic principles and fundamental requirements are great hurdles for its commercial scale application, which is aim of this review article. This review article highlights the recent developments, minimization of GHG, sustainable improvements for the regeneration of used catalyst via green and electron rich donors. It explains, various hybrid wet scrubbing techniques can perform well under mild condition with possible improvements such as development of stable, heterogeneous catalysts, fast and in-situ regeneration for large scale applications. Finally, it discussed recovery of resources i.e., N2O, NH3 and N2, the key challenges about several competitive side products and loss of catalytic activity over time to treat toxic gases via feasible solutions by hybrid wet scrubbing techniques.
    Matched MeSH terms: Oxidation-Reduction
  8. Tan WK, Cheah SC, Parthasarathy S, Rajesh RP, Pang CH, Manickam S
    Chemosphere, 2021 Jul;274:129702.
    PMID: 33529956 DOI: 10.1016/j.chemosphere.2021.129702
    This investigation explores the efficacy of employing ultrasonic cavitation and coupling it with advanced oxidation processes (hydrogen peroxide and Fenton's reagent) for reducing the levels of total ammonia nitrogen in fish pond water containing Tilapia fishes. Ultrasonic cavitation is a phenomenon where the formation, growth and collapse of vaporous bubbles occur in a liquid medium producing highly reactive free radicals. Ultrasonic probe system (20 kHz with 750 W and 1000 W) was used to induce cavitation. Besides, to intensify the process, ultrasonic cavitation was coupled with hydrogen peroxide and Fenton's reagent. Using SERA colour indicator test kits, the levels of ammonium, nitrite and carbonate hardness were measured. The results obtained from this study clearly show that the advanced oxidation processes are more efficient in reducing the ammonium and nitrite levels in fish pond water than using ultrasound alone. The pH and carbonate hardness levels were not affected significantly by ultrasonic cavitation. The optimal treatment time and ultrasound power to treat the water samples were also established. Energy efficiency and cost analysis of this treatment have also been presented, indicating that ultrasonic cavitation coupled with hydrogen peroxide appears to be a promising technique for reducing total ammonia nitrogen levels in the fish pond water.
    Matched MeSH terms: Oxidation-Reduction
  9. Ang TN, Young BR, Taylor M, Burrell R, Aroua MK, Chen WH, et al.
    Chemosphere, 2020 Dec;260:127496.
    PMID: 32659541 DOI: 10.1016/j.chemosphere.2020.127496
    Activated carbons have been reported to be useful for adsorptive removal of the volatile anaesthetic sevoflurane from a vapour stream. The surface functionalities on activated carbons could be modified through aqueous oxidation using oxidising solutions to enhance the sevoflurane adsorption. In this study, an attempt to oxidise the surface of a commercial activated carbon to improve its adsorption capacity for sevoflurane was conducted using 6 mol/L nitric acid, 2 mol/L ammonium persulfate, and 30 wt per cent (wt%) of hydrogen peroxide (H2O2). The adsorption tests at fixed conditions (bed depth: 10 cm, inlet concentration: 528 mg/L, and flow rate: 3 L/min) revealed that H2O2 oxidation gave desirable sevoflurane adsorption (0.510 ± 0.005 mg/m2). A parametric study was conducted with H2O2 to investigate the effect of oxidation conditions to the changes in surface oxygen functionalities by varying the concentration, oxidation duration, and temperature, and the Conductor-like Screening Model for Real Solvents (COSMO-RS) was applied to predict the interactions between oxygen functionalities and sevoflurane. The H2O2 oxidation incorporated varying degrees of both surface oxygen functionalities with hydrogen bond (HB) acceptor and HB donor characters under the studied conditions. Oxidised samples with enriched oxygen functionalities with HB acceptor character and fewer HB donor character exhibited better adsorption capacity for sevoflurane. The presence of a high amount of oxygen functional groups with HB donor character adversely affected the sevoflurane adsorption despite the enrichment of oxygen functional groups with HB acceptor character that have a higher tendency to adsorb sevoflurane.
    Matched MeSH terms: Oxidation-Reduction
  10. Hussain I, Jalil AA, Hamid MYS, Hassan NS
    Chemosphere, 2021 Aug;277:130285.
    PMID: 33794437 DOI: 10.1016/j.chemosphere.2021.130285
    Carbon monoxide (CO) is the most harmful pollutant in the air, causing environmental issues and adversely affecting humans and the vegetation and then raises global warming indirectly. CO oxidation is one of the most effective methods of reducing CO by converting it into carbon dioxide (CO2) using a suitable catalytic system, due to its simplicity and great value for pollution control. The CO oxidation reaction has been widely studied in various applications, including proton-exchange membrane fuel cell technology and catalytic converters. CO oxidation has also been of great academic interest over the last few decades as a model reaction. Many review studies have been produced on catalysts development for CO oxidation, emphasizing noble metal catalysts, the configuration of catalysts, process parameter influence, and the deactivation of catalysts. Nevertheless, there is still some gap in a state of the art knowledge devoted exclusively to synergistic interactions between catalytic activity and physicochemical properties. In an effort to fill this gap, this analysis updates and clarifies innovations for various latest developed catalytic CO oxidation systems with contemporary evaluation and the synergistic relationship between oxygen vacancies, strong metal-support interaction, particle size, metal dispersion, chemical composition acidity/basicity, reducibility, porosity, and surface area. This review study is useful for environmentalists, scientists, and experts working on mitigating the harmful effects of CO on both academic and commercial levels in the research and development sectors.
    Matched MeSH terms: Oxidation-Reduction
  11. Ahmad MS, Ab Rahim MH, Alqahtani TM, Witoon T, Lim JW, Cheng CK
    Chemosphere, 2021 Aug;276:130128.
    PMID: 33714877 DOI: 10.1016/j.chemosphere.2021.130128
    Over the past decades, research efforts are being devoted into utilizing the biomass waste as a major source of green energy to maintain the economic, environmental, and social sustainability. Specifically, there is an emerging consensus on the significance of glycerol (an underutilised waste from biodiesel industry) as a cheap, non-toxic, and renewable source for valuable chemicals synthesis. There are numerous methods enacted to convert this glycerol waste to tartronic acid, mesoxalic acid, glyceraldehyde, dihydroxyacetone, oxalic acid and so on. Among these, the green electro-oxidation technique is one of the techniques that possesses potential for industrial application due to advantages such as non-toxicity process, fast response, and lower energy consumption. The current review covers the general understanding on commonly used techniques for alcohol (C1 & C2) conversion, with a specific insight on glycerol (C3) electro-oxidation (GOR). Since catalysts are the backbone of chemical reaction, they are responsible for the overall economy prospect of any processes. To this end, a comprehensive review on catalysts, which include noble metals, non-noble metals, and non-metals anchored over various supports are incorporated in this review. Moreover, a fundamental insight into the development of future electrocatalysts for glycerol oxidation along with products analysis is also presented.
    Matched MeSH terms: Oxidation-Reduction
  12. Yien Fang T, Praveena SM, Aris AZ, Syed Ismail SN, Rasdi I
    Chemosphere, 2019 Jan;215:153-162.
    PMID: 30316157 DOI: 10.1016/j.chemosphere.2018.10.032
    Steroid estrogens, such as 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) are potent and were categorized as "Watch List" in Directive 2013/39/EU because of their potential risks to aquatic environment. Commercialized enzyme-linked immunosorbent assay (ELISA) kits have been used to quantify steroid estrogens in wastewater samples due to their simplicity, rapid, cost-effectiveness, and validated assays. Hence, this study aims to determine the occurrence and removal of steroid hormones in Malaysian wastewater treatment plants (WWTPs) by ELISA, to identify the association of removal efficiency (E2 and EE2) with respect to WWTPs operating conditions, and to assess the potential risks of steroid estrogens to aquatic environment and human. Results showed E2 concentration ranged from 88.2 ± 7.0 ng/L to 93.9 ± 6.9 ng/L in influent and 35.1 ± 17.3 ng/L to 85.2 ± 7.6 ng/L in effluent, with removal of 6.4%-63.0%. The EE2 concentration ranged from 0.2 ± 0.2 ng/L to 4.9 ± 6.3 ng/L in influent and 0.02 ± 0.03 ng/L to 1.0 ± 0.8 ng/L in effluent, with removal of 28.3-99.3%. There is a correlation between EE2 removal with total suspended solid (TSS) and oxidation reduction potential (ORP), and was statistically significant. Despite the calculated estrogenic activity for E2 and EE2 was relatively high, dilution effects could lower estrogenic response to aquatic environment. Besides, these six selected WWTPs have cumulative RQ values below the allowable limit, except WWTP 1. Relatively high precipitation (129-218 mm) could further dilute estrogens concentration in the receiving river. These outputs can be used as quantitative information for evaluating the occurrence and removal of steroid estrogens in Malaysian WWTPs.
    Matched MeSH terms: Oxidation-Reduction
  13. Sekine M, Akizuki S, Kishi M, Kurosawa N, Toda T
    Chemosphere, 2020 Apr;244:125381.
    PMID: 31805460 DOI: 10.1016/j.chemosphere.2019.125381
    Sulfide inhibition to nitrifying bacteria has prevented the integration of digestate nitrification and biogas desulfurization to simplify anaerobic digestion systems. In this study, liquid digestate with NaHS solution was treated using nitrifying sludge in a sequential-batch reactor with a long fill period, with an ammonium loading rate of 293 mg-N L-1 d-1 and a stepwise increase in the sulfide loading rate from 0 to 32, 64, 128, and 256 mg-S L-1 d-1. Batch bioassays and microbial community analysis were also conducted with reactor sludge under each sulfide loading rate to quantify the microbial acclimatization to sulfide. In the reactor, sulfide was completely removed. Complete nitrification was maintained up to a sulfide load of 128 mg-S L-1 d-1, which is higher than that in previous reports and sufficient for biogas treatment. In the batch bioassays, the sulfide tolerance of NH4+ oxidizing activity (the 50% inhibitory sulfide concentration) increased fourfold over time with the compositional shift of nitrifying bacteria to Nitrosomonas nitrosa and Nitrobacter spp. However, the sulfur removal rate of the sludge slightly decreased, although the abundance of the sulfur-oxidizing bacteria Hyphomicrobium increased by 30%. Therefore, nitrifying sludge was probably acclimatized to sulfide not by the increasing sulfide removal rate but rather by the increasing nitrifying bacteria, which have high sulfide tolerance. Successful simultaneous nitrification and desulfurization were achieved using a sequential-batch reactor with a long fill period, which was effective in facilitating the present acclimatization.
    Matched MeSH terms: Oxidation-Reduction
  14. Nordin N, Ho LN, Ong SA, Ibrahim AH, Abdul Rani AL, Lee SL, et al.
    Chemosphere, 2020 Apr;244:125459.
    PMID: 31790991 DOI: 10.1016/j.chemosphere.2019.125459
    The hybrid electrochemical system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a combined technology of advanced oxidation process (AOP) which involve the hydroxyl radical formation for simultaneous degradation of organic pollutant and electricity generation. The p-nitrosodimethylaniline (RNO) spin trapping technique was applied by analyzing the RNO bleaching performance to detect the OH at the PFC and PC reactors. The presence of UV light showed higher RNO bleaching rate at the PFC reactor (11.7%) with maximum power density (Pmax = 3.14 mW cm-2). Results revealed that the optimum of maximum power density was observed at iron plate size of 30 cm2. UV light became a limiting factor in the PFC system as a power source in the PFC-PC system. Meanwhile, iron plate plays an important role to supply the soluble Fe2+ ions by oxidation process and become a suitable catalyst for in-situ production of H2O2 and OH through the PC process to degrade the organic molecules.
    Matched MeSH terms: Oxidation-Reduction
  15. Ganesan S, Vadivelu VM
    Chemosphere, 2019 May;223:668-674.
    PMID: 30802832 DOI: 10.1016/j.chemosphere.2019.02.104
    Hydrazine is an intermediate product of the anaerobic ammonium oxidation (Anammox) process where both ammonium and nitrite in wastewater are converted to nitrogen gas by bacteria. In this study the effect of external hydrazine addition (5, 10, 15, and 20 mg/L) on the start-up period of the Anammox process was studied using sequencing batch reactors (SBRs). The SBR with an addition of 10 mg/L hydrazine took only 7 weeks to stabilize and achieve the maximum removal of ammonium and nitrite, whereas the SBR without the addition of hydrazine took 12 weeks. The amount of Heme C extracted from the biomass indicated that externally added hydrazine accelerated the growth of Anammox bacteria and reduced the release of nitrous oxide gas from the reactors.
    Matched MeSH terms: Oxidation-Reduction
  16. Nasir AM, Goh PS, Ismail AF
    Chemosphere, 2018 Jun;200:504-512.
    PMID: 29501887 DOI: 10.1016/j.chemosphere.2018.02.126
    A novel hydrous iron-nickel-manganese (HINM) trimetal oxide was successfully fabricated using oxidation and coprecipitation method for metalloid arsenite removal. The atomic ratio of Fe:Ni:Mn for this adsorbent is 3:2:1. HINM adsorbent was identified as an amorphous nanosized adsorbent with particle size ranged from 30 nm to 60 nm meanwhile the total active surface area and pore diameter of HINM area of 195.78 m2/g and 2.43 nm, respectively. Experimental data of arsenite adsorption is best fitted into pseudo-second order and Freundlich isotherm model. The maximum adsorption capacity of arsenite onto HINM was 81.9 mg/g. Thermodynamic study showed that the adsorption of arsenite was a spontaneous and endothermic reaction with enthalpy change of 14.04 kJ/mol and Gibbs energy of -12 to -14 kJ/mol. Zeta potential, thermal gravimetric (TGA) and Fourier transform infrared (FTIR) analysis were applied to elucidate the mechanism of arsenite adsorption by HINM. Mechanism of arsenite adsorption by HINM involved both chemisorption and physisorption based on the electrostatic attraction between arsenite ions and surface charge of HINM. It also involved the hydroxyl substitution by arsenite ions through the formation of inner-sphere complex. Reusability of HINM trimetal oxide was up to 89% after three cycles of testing implied that HINM trimetal oxide is a promising and practical adsorbent for arsenite.
    Matched MeSH terms: Oxidation-Reduction
  17. Abilaji S, Narenkumar J, Das B, S S, Rajakrishnan R, Sathishkumar K, et al.
    Chemosphere, 2023 Dec;345:140516.
    PMID: 37879370 DOI: 10.1016/j.chemosphere.2023.140516
    Azo dyes are the most varied class of synthetic chemicals with non-degradable characteristics. They are complex compounds made up of many different parts. It was primarily utilized for various application procedures in the dyeing industry. Therefore, it's crucial to develop an economical and environmentally friendly approach to treating azo dyes. Our present investigation is an integrated approach to the electrooxidation (EO) process of azo dyes using RuO2-IrO2-TiO2 (anode) and titanium mesh (cathode) electrodes, followed by the biodegradation process (BD) of the treated EO dyes. Chemical oxygen demand (COD) removal efficiency as follows MB (55%) ≥ MR (45%) ≥ TB (38%) ≥ CR (37%) correspondingly. The fragment generated during the degradation process which was identified with high-resolution mass spectrometry (HRMS) and its degradation mechanism pathway was proposed as demethylation reaction and N-N and C-N/C-S cleavage reaction occurs during EO. In biodegradation studies by Aeromonas hydrophila AR1, the EO treated dyes were completely mineralized aerobically which was evident by the COD removal efficiency as MB (98%) ≥ MR (92.9%) ≥ TB (88%) ≥ CR (87%) respectively. The EO process of dyes produced intermediate components with lower molecular weights, which was effectively utilized by the Aeromonas hydrophila AR1 and resulted in higher degradation efficiency 98%. We reported the significance of the enhanced approach of electrochemical oxidation with biodegradation studies in the effective removal of the pollutants in dye industrial effluent contaminated water environment.
    Matched MeSH terms: Oxidation-Reduction
  18. Kuppusamy UR, Indran M, Ahmad T, Wong SW, Tan SY, Mahmood AA
    Clin Chim Acta, 2005 Jan;351(1-2):197-201.
    PMID: 15563890 DOI: 10.1016/j.cccn.2004.09.014
    BACKGROUND: Comparisons of oxidative indices and total antioxidant status between end-stage renal disease (ESRD) patients with or without diabetes is scant, especially in the Asian population.
    METHOD: The assays were carried out according to known established protocols.
    RESULT: The present study showed that ESRD patients with or without non-insulin-dependent diabetes mellitus (NIDDM) did not have any significant differences in antioxidant enzyme activities, advanced glycated end products (AGE), advanced oxidized protein products (AOPP) and ferric reducing ability of plasma (FRAP), indicating that hyperglycemia does not exacerbate oxidative damage in ESRD. The regulation of catalase and glutathione peroxidase is also altered in ESRD. Elevated FRAP was observed in both ESRD groups (with and without NIDDM). The dialysis process did not alter the antioxidant enzyme activities but decreased AGEs and FRAP and increased AOPP levels.
    CONCLUSION: Oxidative stress is present in ESRD but this is not significantly exacerbated by hyperglycemia. The contribution of components in the pathology of renal failure towards oxidative stress exceeds that of hyperglycemia.
    Matched MeSH terms: Oxidation-Reduction
  19. Alahmar AT, Calogero AE, Singh R, Cannarella R, Sengupta P, Dutta S
    Clin Exp Reprod Med, 2021 Jun;48(2):97-104.
    PMID: 34078005 DOI: 10.5653/cerm.2020.04175
    Male infertility has a complex etiopathology, which mostly remains elusive. Although research has claimed that oxidative stress (OS) is the most likely underlying mechanism of idiopathic male infertility, the specific treatment of OS-mediated male infertility requires further investigation. Coenzyme Q10 (CoQ10), a vitamin-like substance, has been found in measurable levels in human semen. It exhibits essential metabolic and antioxidant functions, as well as playing a vital role in mitochondrial bioenergetics. Thus, CoQ10 may be a key player in the maintenance of biological redox balance. CoQ10 concentrations in seminal plasma directly correlate with semen parameters, especially sperm count and sperm motility. Seminal CoQ10 concentrations have been shown to be altered in various male infertility states, such as varicocele, asthenozoospermia, and medical or surgical regimens used to treat male infertility. These observations imply that CoQ10 plays an important physiological role in the maintenance and amelioration of semen quality. The present article thereby aimed to review the possible mechanisms through which CoQ10 plays a role in the regulation of male reproductive function, and to concisely discuss its efficacy as an ameliorative agent in restoring semen parameters in male infertility, as well as its impact on OS markers, sperm DNA fragmentation, pregnancy, and assisted reproductive technology outcomes.
    Matched MeSH terms: Oxidation-Reduction
  20. Dear JW, Ng ML, Bateman DN, Leroy Sivappiragasam P, Choi H, Khoo BBJ, et al.
    Clin Transl Sci, 2021 Jul;14(4):1476-1489.
    PMID: 33742775 DOI: 10.1111/cts.13009
    N-acetylcysteine (NAC) is an antidote to prevent acetaminophen (paracetamol-APAP)-induced acute liver injury (ALI). The 3-bag licensed 20.25 h standard regimen, and a 12 h modified regimen, are used to treat APAP overdose. This study evaluated the redox thiol response and APAP metabolites, in patients with a single APAP overdose treated with either the 20.25 h standard or 12 h modified regimen. We used liquid chromatography tandem mass spectrometry to quantify clinically important oxidative stress biomarkers and APAP metabolites in plasma samples from 45 patients who participated in a randomized controlled trial (SNAP trial). We investigated the time course response of plasma metabolites at predose, 12 h, and 20.25 h post-start of NAC infusion. The results showed that the 12 h modified regimen resulted in a significant elevation of plasma NAC and cysteine concentrations at 12 h post-infusion. We found no significant alteration in the metabolism of APAP, mitochondrial, amino acids, and other thiol biomarkers with the two regimens. We examined APAP and purine metabolism in overdose patients who developed ALI. We showed the major APAP-metabolites and xanthine were significantly higher in patients with ALI. These biomarkers correlated well with alanine aminotransferase activity at admission. Receiver operating characteristic analysis showed that at admission, plasma APAP-metabolites and xanthine concentrations were predictive for ALI. In conclusion, a significantly higher redox thiol response with the modified NAC regimen at 12 h postdose suggests this regimen may produce greater antioxidant efficacy. At baseline, plasma APAP and purine metabolites may be useful biomarkers for early prediction of APAP-induced ALI.
    Matched MeSH terms: Oxidation-Reduction/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links