Displaying publications 81 - 82 of 82 in total

Abstract:
Sort:
  1. Saidin S, Othman N, Noordin R
    Eur J Clin Microbiol Infect Dis, 2019 Jan;38(1):15-38.
    PMID: 30255429 DOI: 10.1007/s10096-018-3379-3
    Amoebiasis, an enteric protozoan disease caused by Entamoeba histolytica, is a public health problem in many developing countries, causing up to 100,000 fatal cases annually. Detection of the pathogenic E. histolytica and its differentiation from the non-pathogenic Entamoeba spp. play a crucial role in the clinical management of patients. Laboratory diagnosis of intestinal amoebiasis in developing countries still relies on labour-intensive and insensitive methods involving staining of stool sample and microscopy. Newer and more sensitive methods include a variety of antigen detection ELISAs and rapid tests; however, their diagnostic sensitivity and specificity seem to vary between studies, and some tests do not distinguish among the Entamoeba species. Molecular detection techniques are highly sensitive and specific and isothermal amplification approaches may be developed into field-applicable tests; however, cost is still a barrier for their use as a routine laboratory test method in most endemic areas. Laboratory diagnosis of extraintestinal amoebiasis faces challenges of lack of definitive detection of current infection and commercially available point-of-care tests. For both types of amoebiasis, there is still a need for highly sensitive and specific tests that are rapid and cost-effective for use in developing countries where the disease is prevalent. In recent years, new molecules of diagnostic value are being discovered and new tests developed. The advances in 'omics' technologies are enabling discoveries of new biomarkers that may help distinguish between different infection stages.
    Matched MeSH terms: Molecular Diagnostic Techniques*
  2. Lai MY, Ooi CH, Lau YL
    Malar J, 2021 Mar 25;20(1):166.
    PMID: 33766038 DOI: 10.1186/s12936-021-03707-0
    BACKGROUND: As an alternative to PCR methods, LAMP is increasingly being used in the field of molecular diagnostics. Under isothermal conditions at 65 °C, the entire procedure takes approximately 30 min to complete. In this study, we establish a sensitive and visualized LAMP method in a closed-tube system for the detection of Plasmodium knowlesi.

    METHODS: A total of 71 malaria microscopy positive blood samples collected in blood spots were obtained from the Sarawak State Health Department. Using 18s rRNA as the target gene, nested PCR and SYBR green I LAMP assay were performed following the DNA extraction. The colour changes of LAMP end products were observed by naked eyes.

    RESULTS: LAMP assay demonstrated a detection limit of 10 copies/µL in comparison with 100 copies/µL nested PCR. Of 71 P. knowlesi blood samples collected, LAMP detected 69 microscopy-positive samples. LAMP exhibited higher sensitivity than nested PCR assay. The SYBR green I LAMP assay was 97.1% sensitive (95% CI 90.2-99.7%) and 100% specific (95% CI 83.2-100%). Without opening the cap, incorporation of SYBR green I into the inner cap of the tube enabled the direct visualization of results upon completion of amplification. The positives instantaneously turned green while the negatives remained orange.

    CONCLUSIONS: These results indicate that SYBR green I LAMP assay is a convenient diagnosis tool for the detection of P. knowlesi in remote settings.

    Matched MeSH terms: Molecular Diagnostic Techniques/instrumentation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links