Displaying publications 101 - 104 of 104 in total

Abstract:
Sort:
  1. Fry SR, Meyer M, Semple MG, Simmons CP, Sekaran SD, Huang JX, et al.
    PLoS Negl Trop Dis, 2011 Jun;5(6):e1199.
    PMID: 21713023 DOI: 10.1371/journal.pntd.0001199
    BACKGROUND: Serological tests for IgM and IgG are routinely used in clinical laboratories for the rapid diagnosis of dengue and can differentiate between primary and secondary infections. Dengue virus non-structural protein 1 (NS1) has been identified as an early marker for acute dengue, and is typically present between days 1-9 post-onset of illness but following seroconversion it can be difficult to detect in serum.
    AIMS: To evaluate the performance of a newly developed Panbio® Dengue Early Rapid test for NS1 and determine if it can improve diagnostic sensitivity when used in combination with a commercial IgM/IgG rapid test.
    METHODOLOGY: The clinical performance of the Dengue Early Rapid was evaluated in a retrospective study in Vietnam with 198 acute laboratory-confirmed positive and 100 negative samples. The performance of the Dengue Early Rapid in combination with the IgM/IgG Rapid test was also evaluated in Malaysia with 263 laboratory-confirmed positive and 30 negative samples.
    KEY RESULTS: In Vietnam the sensitivity and specificity of the test was 69.2% (95% CI: 62.8% to 75.6%) and 96% (95% CI: 92.2% to 99.8) respectively. In Malaysia the performance was similar with 68.9% sensitivity (95% CI: 61.8% to 76.1%) and 96.7% specificity (95% CI: 82.8% to 99.9%) compared to RT-PCR. Importantly, when the Dengue Early Rapid test was used in combination with the IgM/IgG test the sensitivity increased to 93.0%. When the two tests were compared at each day post-onset of illness there was clear differentiation between the antigen and antibody markers.
    CONCLUSIONS: This study highlights that using dengue NS1 antigen detection in combination with anti-glycoprotein E IgM and IgG serology can significantly increase the sensitivity of acute dengue diagnosis and extends the possible window of detection to include very early acute samples and enhances the clinical utility of rapid immunochromatographic testing for dengue.
  2. Le CF, Jefferies JM, Yusof MY, Sekaran SD, Clarke SC
    Expert Rev Anti Infect Ther, 2012 Jun;10(6):707-19.
    PMID: 22734960 DOI: 10.1586/eri.12.54
    In Malaysia, various aspects of the epidemiology of pneumococcal carriage and disease remain largely unclear due to the lack of supporting data. Although a number of relevant studies have been documented, their individual discrete findings are not sufficient to inform experts on pneumococcal epidemiology at a national level. Therefore, in this review we aim to bring together and systematically evaluate the key information regarding pneumococcal disease epidemiology in Malaysia and provide a comprehensive overview of the data. Major aspects discussed include pneumococcal carriage, disease incidence and prevalence, age factors, invasiveness of pneumococci, serotypes, molecular epidemiology and antibiotic susceptibility. Penicillin resistance is increasingly prevalent and studies suggest that the majority of pneumococcal serotypes causing pneumococcal disease in Malaysia are covered by currently available conjugate vaccines. Continued surveillance is needed to provide a better understanding of pneumococcal epidemiology in Malaysia.
  3. Le CF, Gudimella R, Razali R, Manikam R, Sekaran SD
    Sci Rep, 2016 05 26;6:26828.
    PMID: 27225022 DOI: 10.1038/srep26828
    In our previous studies, we generated a short 13 amino acid antimicrobial peptide (AMP), DM3, showing potent antipneumococcal activity in vitro and in vivo. Here we analyse the underlying mechanisms of action using Next-Generation transcriptome sequencing of penicillin (PEN)-resistant and PEN-susceptible pneumococci treated with DM3, PEN, and combination of DM3 and PEN (DM3PEN). DM3 induced differential expression in cell wall and cell membrane structural and transmembrane processes. Notably, DM3 altered the expression of competence-induction pathways by upregulating CelA, CelB, and CglA while downregulating Ccs16, ComF, and Ccs4 proteins. Capsular polysaccharide subunits were downregulated in DM3-treated cells, however, it was upregulated in PEN- and DM3PEN-treated groups. Additionally, DM3 altered the amino acids biosynthesis pathways, particularly targeting ribosomal rRNA subunits. Downregulation of cationic AMPs resistance pathway suggests that DM3 treatment could autoenhance pneumococci susceptibility to DM3. Gene enrichment analysis showed that unlike PEN and DM3PEN, DM3 treatment exerted no effect on DNA-binding RNA polymerase activity but observed downregulation of RpoD and RNA polymerase sigma factor. In contrast to DM3, DM3PEN altered the regulation of multiple purine/pyrimidine biosynthesis and metabolic pathways. Future studies based on in vitro experiments are proposed to investigate the key pathways leading to pneumococcal cell death caused by DM3.
  4. Ismail AA, Mahboob T, Samudi Raju C, Sekaran SD
    Trop Biomed, 2019 Dec 01;36(4):888-897.
    PMID: 33597462
    Zika virus (ZIKV) is a mosquito-borne Flaviviruses. ZIKV is known to cause birth defect in pregnant women, especially microcephaly in the fetus. Hence, more study is required to understand the infection of Zika virus towards human brain microvascular endothelial cells (MECs). In this study, brain MECs were infected with ZIKV at MOI of 1 and 5 in vitro. The changes in barrier function and membrane permeability of ZIKV-infected brain MECs were determined using electric cell-substrate impedance sensing (ECIS) system followed by gene expression of ZIKV-infected brain MECs at 24 hours post infection using one-color gene expression microarray. The ECIS results demonstrated that ZIKV infection enhances vascular leakage by increasing cell membrane permeability via alteration of brain MECs barrier function. This was further supported by high expression of proinflammatory cytokine genes (lnc-IL6-2, TNFAIP1 and TNFAIP6), adhesion molecules (CERCAM and ESAM) and growth factor (FIGF). Overall, findings of this study revealed that ZIKV infection could alter the barrier function of brain MECs by altering adhesion molecules and inflammatory response.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links