Displaying publications 101 - 103 of 103 in total

Abstract:
Sort:
  1. Thomsen M, Ott F, Loens S, Kilic-Berkmen G, Tan AH, Lim SY, et al.
    medRxiv, 2024 Dec 05.
    PMID: 39677454 DOI: 10.1101/2024.12.02.24316741
    Dystonia is one of the most prevalent movement disorders, characterized by significant clinical and etiological heterogeneity. Despite considerable heritability (∼25%) and the identification of several disease-linked genes, the etiology in most patients remains elusive. Moreover, understanding the correlations between clinical manifestation and genetic variants has become increasingly complex. To comprehensively unravel dystonia's genetic spectrum, we performed exome sequencing on 1,924 dystonia patients [40.3% male, 92.9% White, 93.2% isolated dystonia, median age at onset (AAO) 33 years], including 1,895 index patients, who were previously genetically unsolved. The sample was mainly based on two dystonia registries (DysTract and the Dystonia Coalition). Further, 72 additional patients of Asian ethnicity, mainly from Malaysia, were also included. We prioritized patients with negative genetic prescreening, early AAO, positive family history, and multisite involvement of dystonia. Rare variants in genes previously linked to dystonia ( n =405) were examined. Variants were confirmed via Sanger sequencing, and segregation analysis was performed when possible. We identified 137 distinct likely pathogenic or pathogenic variants (according to ACMG criteria) across 51 genes in 163/1,924 patients [42.9% male, 85.9% White, 68.7% isolated dystonia, median AAO 19 years]. This included 153/1,895 index patients, resulting in a diagnostic yield of 8.1%. Notably, 77/137 (56.2%) of these variants were novel, with recurrent variants in EIF2AK2 , VPS16 , KCNMA1 , and SLC2A1 , and novel variant types such as two splice site variants in KMT2B , supported by functional evidence. Additionally, 321 index patients (16.9%) harbored variants of uncertain significance in 102 genes. The most frequently implicated genes included VPS16 , THAP1 , GCH1 , SGCE , GNAL , and KMT2B. Presumably pathogenic variants in less well-established dystonia genes were also found, including KCNMA1 , KIF1A , and ZMYND11. At least six variants (in ADCY5 , GNB1 , IR2BPL, KCNN2 , KMT2B , and VPS16 ) occurred de novo, supporting pathogenicity. ROC curve analysis indicated that AAO and the presence of generalized dystonia were the strongest predictors of a genetic diagnosis, with diagnostic yields of 28.6% in patients with generalized dystonia and 20.4% in those with AAO < 30 years. This study provides a comprehensive examination of the genetic landscape of dystonia, revealing valuable insights into the frequency of dystonia-linked genes and their associated phenotypes. It underscores the utility of exome sequencing in establishing diagnoses within this heterogeneous condition. Despite prescreening, presumably pathogenic variants were identified in almost 10% of patients. Our findings reaffirm several dystonia candidate genes and expand the phenotypic spectrum of some of these genes to include prominent, sometimes isolated dystonia.
  2. Vollstedt EJ, Madoev H, Aasly A, Ahmad-Annuar A, Al-Mubarak B, Alcalay RN, et al.
    PLoS One, 2023;18(10):e0292180.
    PMID: 37788254 DOI: 10.1371/journal.pone.0292180
    Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, currently affecting ~7 million people worldwide. PD is clinically and genetically heterogeneous, with at least 10% of all cases explained by a monogenic cause or strong genetic risk factor. However, the vast majority of our present data on monogenic PD is based on the investigation of patients of European White ancestry, leaving a large knowledge gap on monogenic PD in underrepresented populations. Gene-targeted therapies are being developed at a fast pace and have started entering clinical trials. In light of these developments, building a global network of centers working on monogenic PD, fostering collaborative research, and establishing a clinical trial-ready cohort is imperative. Based on a systematic review of the English literature on monogenic PD and a successful team science approach, we have built up a network of 59 sites worldwide and have collected information on the availability of data, biomaterials, and facilities. To enable access to this resource and to foster collaboration across centers, as well as between academia and industry, we have developed an interactive map and online tool allowing for a quick overview of available resources, along with an option to filter for specific items of interest. This initiative is currently being merged with the Global Parkinson's Genetics Program (GP2), which will attract additional centers with a focus on underrepresented sites. This growing resource and tool will facilitate collaborative research and impact the development and testing of new therapies for monogenic and potentially for idiopathic PD patients.
  3. Vollstedt EJ, Schaake S, Lohmann K, Padmanabhan S, Brice A, Lesage S, et al.
    Mov Disord, 2023 Feb;38(2):286-303.
    PMID: 36692014 DOI: 10.1002/mds.29288
    BACKGROUND: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited.

    OBJECTIVE: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD.

    METHODS: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed.

    RESULTS: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published.

    CONCLUSIONS: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links