Displaying publications 101 - 120 of 785 in total

Abstract:
Sort:
  1. Chan SW, Looi CK, Ho WK, Huang W, Seow P, Wu L
    Heliyon, 2021 Sep;7(9):e07922.
    PMID: 34527824 DOI: 10.1016/j.heliyon.2021.e07922
    Despite the increasing presence of computational thinking (CT) in the mathematics context, the connection between CT and mathematics in a practical classroom context is an important area for further research. This study intends to investigate the impact of CT activities in the topic of number patterns on the learning performance of secondary students in Singapore. The Rasch model analysis was employed to assess differences of ability between students from the experimental group and control group. 106 Secondary One students (age 13 years old) from a secondary school in Singapore took part in this study. A quasi-experimental non-equivalent groups design was utilized where 70 students were assigned into the experimental group, and 36 students were assigned into the control group. The experimental group was given intervention with CT-infused activities both on- and off-computer, while the control group received no such intervention. Both groups were administered the pretest before the intervention and the posttest after the intervention. The data gathered were analyzed using the partial credit version of the Rasch model. Analysis of pretest and posttest results revealed that the performance of the experimental group was similar to the control group. The findings did not support the hypothesis that integrating CT in lessons can result in improved mathematics learning. However, the drastic improvement was observed in individual students from the experimental group, while there is no obvious or extreme improvement for the students from the control group. This study provides some new empirical evidence and practical contributions to the infusion of CT practices in the mathematics classroom.
  2. Jalil MA, Moniruzzaman M, Parvez MS, Siddika A, Gafur MA, Repon MR, et al.
    Heliyon, 2021 Aug;7(8):e07861.
    PMID: 34485740 DOI: 10.1016/j.heliyon.2021.e07861
    This research aims to study the spinnability of pristine PALF and PALF blended cotton using the existing spinning machines. Apron draft ring spinning frame and flyer jute spinning frame were used to produce 100% PALF yarn and the yarns count were found 121 tex and 138 tex separately. Besides, 90:10 and 80:20 cotton-PALF blended 30 tex yarn spun in a cotton spinning system with different twist factors. With both yarns, two samples; 1/1 plain and 3/1 twill fabrics, were fabricated through equal density. For plain and twill fabric, PALF yarn of 121 tex and 138 tex were used in the warp way, respectively and PALF blended cotton yarn of 60 tex was used in the weft way. Through the study, physio-mechanical properties of the samples were explored and FTIR & XRD patterns were analyzed to perform the task for diversified use as an ultimate fiber in industrial and domestic purposes.
  3. Dimyati K, Nashir H, Elviandri E, Absori A, Wardiono K, Budiono A
    Heliyon, 2021 Aug;7(8):e07865.
    PMID: 34485743 DOI: 10.1016/j.heliyon.2021.e07865
    Introduction: The modern welfare state concept is based on individualistic and liberal social contracts that prioritize individual interests with liberalist, partial and non-holistic hegemonies. The welfare state concept has failed in directing citizens to achieve justice, peace, and welfare. The basic aim of the Republic of Indonesia's formation is to form a welfare country. But the Indonesian constitutional articles do not have the power to form a welfare society compared to those of other states, such as Norway, Japan, the USA, and Malaysia, whose constitutions aim to achieve welfare.

    Objective: This research aims to explore the formulation of Indonesia as the Prophetic Transcendental-Based Legal Welfare State. The urgency of this research is on the effort of model invention, or a new postulate on the form of the Indonesian Legal Welfare State.

    Methods: This is normative-juridical research with a philosophical approach to find and explore the formulation of Indonesia as the Prophetic Transcendental-Based Legal Welfare State.

    Conclusion: This research found that as a Legal Welfare State, Indonesia inspirits Pancasila as the moral-spiritual guidance in all developmental policies on the national law, economy, politics, and culture. Thus, the direction of the state's development is inseparable from its roots, namely the prophetic and transcendental Pancasila.

    Novelty: The previous researches discussed Indonesia as a welfare state only based on the determining legislation or laws. But this research discusses the philosophical aspect based on the thoughts of Indonesia's founding fathers.

  4. Nor ANM, Corstanje R, Harris JA, Grafius DR, Siriwardena GM
    Heliyon, 2017 Jun;3(6):e00325.
    PMID: 28706999 DOI: 10.1016/j.heliyon.2017.e00325
    Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow (Passer montanus) and Yellow-vented bulbul (Pycnonotus goiavier) in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines). The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance) were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such models for biodiversity conservation and urban planning.
  5. Rahman MR, Hamdan S, Lai JCH, Jawaid M, Yusof FABM
    Heliyon, 2017 Jul;3(7):e00342.
    PMID: 28725868 DOI: 10.1016/j.heliyon.2017.e00342
    In this study, the physical, morphological, mechanical and thermal properties of furfuryl alcohol/2-ethylhexyl methacrylate/halloysite nanoclay wood polymer nanocomposites (FA-co-EHMA-HNC WPNCs) were investigated. FA-co-EHMA-HNC WPNCs were prepared via an impregnation method and the properties of the nanocomposites were characterized through the weight percent gain, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), three-point flexural test, dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) analysis and moisture absorption test. The weight percent gain in the 50:50 FA-co-EHMA-HNC WPNC was the highest compared with the raw wood (RW) and other WPNCs. The FT-IR results confirmed that polymerization took place in the nanocomposites, especially 50:50 FA-co-EHMA-HNC WPNC, which had a reduced amount of hydroxyl groups. The SEM results revealed that the 50:50 FA-co-EHMA-HNC WPNC had the smoothest and most uniform surface among all of the nanocomposites. The 50:50 FA-co-EHMA-HNC WPNC showed the highest flexural strength and modulus of elasticity. The results revealed that the storage modulus and loss modulus of the FA-co-EHMA-HNC WPNCs were higher and the tan δ of FA-co-EHMA-HNC WNPCs was lower compared with the RW. The FA-co-EHMA-HNC WPNCs exhibited the higher thermal stability in the TGA and DSC analysis. The 50:50 FA-co-EHMA-HNC WPNC exhibited remarkably lower moisture absorption compared with the RW. Overall, this study proved that the ratio 50:50 FA-co-EHMA ratio was the most suitable for introduction in the in the RW.
  6. Tagiling N, Ab Rashid R, Azhan SNA, Dollah N, Geso M, Rahman WN
    Heliyon, 2018 Oct;4(10):e00864.
    PMID: 30364574 DOI: 10.1016/j.heliyon.2018.e00864
    Proper dosimetry settings are crucial in radiotherapy to ensure accurate radiation dose delivery. This work evaluated scanning parameters as affecting factors in reading the dose-response of EBT2 and EBT3 radiochromic films (RCFs) irradiated with clinical photon and electron beams. The RCFs were digitised using Epson® Expression® 10000XL flatbed scanner and image analyses of net optical density (netOD) were conducted using five scanning parameters i.e. film type, resolution, image bit depth, colour to grayscale transformation and image inversion. The results showed that increasing spatial resolution and deepening colour depth did not improve film sensitivity, while grayscale scanning caused sensitivity reduction below than that detected in the Red-channel. It is also evident that invert and colour negative film type selection negated netOD values, hence unsuitable for scanning RCFs. In conclusion, choosing appropriate scanning parameters are important to maintain preciseness and reproducibility in films dosimetry.
  7. Lim BH, Majlan EH, Daud WRW, Rosli MI, Husaini T
    Heliyon, 2018 Oct;4(10):e00845.
    PMID: 30338304 DOI: 10.1016/j.heliyon.2018.e00845
    The flow distribution of a proton exchange membrane fuel cell within a manifold plays an important role on its performance. This study presents a numerical analysis of the flow distribution behavior within different manifold configurations. A two-dimensional model with 75 cells was employed to study the flow behavior. The variation in the stoichiometry and number of cells was also studied. Three different flow configurations were considered with different numbers of flow inlets and outlets. The flow characteristics, such as the pressure and velocity variations in the manifold and cells, were measured to determine the effects of the different flow configurations. The results indicated that the double inlet/outlet configuration had the best flow distribution when using 75 cells. Moreover, increasing the stoichiometry resulted in a better flow distribution to the cells in a stack.
  8. Gul Y, Sultan Z, Jokhio GA
    Heliyon, 2018 Aug;4(8):e00715.
    PMID: 30094383 DOI: 10.1016/j.heliyon.2018.e00715
    It has been reported in the literature that the perception of crime at the neighbourhood level inversely affects the walking behaviour of individuals. On the other hand, the gated neighbourhoods are considered safe from crime, however, there is a lack of research on the association of the perception of crime and walking in gated neighbourhoods. Therefore, the objectives of the study reported in this paper were to investigate the association between the perception of crime and walking in gated and non-gated neighbourhoods. A questionnaire was used to collect the data on walking and the perception of crime in 16 neighbourhoods of Karachi Pakistan, 8 out of which were gated. Independent sample t-test and gamma tests were used for the data analysis. The results show that although there is a lower perception of crime in the gated neighbourhoods, yet the inhabitants of gated neighbourhoods engage in less physical activity comprising of walking. In spite of a greater perception of crime in non-gated neighbourhoods, higher values of walking were reported by the residents of those neighbourhoods. Therefore, it has been concluded that there does not exist a definite relationship between the perception of crime and walking behaviour at the neighbourhood level and the perceived safety from crime claimed by the proponents of the gated neighbourhoods does not encourage walking among the residents.
  9. Shaari N, Kamarudin SK, Basri S
    Heliyon, 2018 Sep;4(9):e00808.
    PMID: 30246163 DOI: 10.1016/j.heliyon.2018.e00808
    The influence of methanol as a solvent on the properties of sodium alginate/sulfonated graphene oxide (SA/SGO) membranes was explored in water-methanol mixed conditions with various methanol concentrations and temperatures through molecular dynamics simulations. The methanol uptake of the membrane showed an isolation phase determined from the simulation results. The distance between the sulfonic acid groups increased in higher methanol concentrations, as observed from S-S RDFs. Furthermore, the distance between the SA-chain RDFs and the solvent molecules was analysed to determine a) the affinity of water towards the sulfonic acid groups and b) the affinity of the aromatic backbone of the SA towards methanol molecules. A decrease in water molecule diffusion led to an increase in methanol diffusion and uptake. SA/SGO membranes exhibited a smaller diffusion coefficient than that for the Nafion membranes, as calculated from simulation results and compared to the experimental work. Additionally, the diffusion ability increased at higher temperatures for all permeants. The interaction information obtained is useful for DMFC applications.
  10. You HW
    Heliyon, 2018 Oct;4(10):e00848.
    PMID: 30386825 DOI: 10.1016/j.heliyon.2018.e00848
    The side sensitive group runs (SSGR) chart is better than both the Shewhart and synthetic charts in detecting small and moderate process mean shifts. In practical circumstances, the process parameters are seldom known, so it is necessary to estimate them from in-control Phase-I samples. Research has discovered that a large number of in-control Phase-I samples are needed for the SSGR chart with estimated process parameters to behave similarly to a chart with known process parameters. The common metric to evaluate the performance of the control chart is average run length (ARL). An assumption for the computation of the ARL is that the shift size is assumed to be known. In reality however, the practitioners may not know the following shift size in advance. In light of this, the expected average run length (EARL) will be considered to measure the performance of the SSGR chart. Moreover, the standard deviation of the ARL (SDARL) will be studied, which is used to quantify the between-practitioner variability in the SSGR chart with estimated process parameters. This paper proposes the optimal design of the estimated process parameters SSGR chart based on the EARL criterion. The application of the optimal SSGR chart with estimated process parameters is demonstrated with actual data taken from a manufacturing company.
  11. Mohd Ridzwan SF, Bhoo-Pathy N, Isahak M, Wee LH
    Heliyon, 2019 Sep;5(9):e02478.
    PMID: 31687573 DOI: 10.1016/j.heliyon.2019.e02478
    Background: Radioprotective garments protect medical radiation workers from exposure to radiation at workplace. However, previous studies have found poor adherence to the use of radioprotective garments.

    Objectives: We explored the perceptions and practices related to the use of radioprotective garments among medical radiation workers in public hospitals, and sought to understand the reasons for non-adherence.

    Design and setting: A qualitative approach was applied by conducting face-to-face in-depth interviews with 18 medical radiation workers from three university hospitals using a semi-structured interview guide.

    Results: Five themes emerged with respect to perceptions on the use of radioprotective garments: (i) the dilemmas in practising radiation protection, (ii) indication of workers' credibility, (iii) physical appearance of radioprotective garments, (iv) practicality of radioprotective garment use, and (v) impact on workflow. Actual lack of radioprotective garment use was attributed to inadequate number of thyroid shield and other garments, radioprotective garments' unsightly appearance including being dirty and defective, impracticality of using radioprotective garments for some nuclear medicine procedures, disruption of workflow because of workers' limited movements, attitudes of workers, and organisational influences.

    Conclusion: Medical radiation workers demonstrated a definitive practice of using radioprotective aprons, but often neglected to use thyroid shields and other garments. Availability and hygiene are reported as the core issues, while unclear guidelines on practical use of radioprotective garments appear to lead to confusion among medical radiation workers. To the best of our knowledge, this is the first qualitative study of its kind from a middle-income Asian setting.

  12. Tukimat NNA, Ahmad Syukri NA, Malek MA
    Heliyon, 2019 Sep;5(9):e02456.
    PMID: 31687558 DOI: 10.1016/j.heliyon.2019.e02456
    An accuracy in the hydrological modelling will be affected when having limited data sources especially at ungauged areas. Due to this matter, it will not receiving any significant attention especially on the potential hydrologic extremes. Thus, the objective was to analyse the accuracy of the long-term projected rainfall at ungauged rainfall station using integrated Statistical Downscaling Model and Geographic Information System (SDSM-GIS) model. The SDSM was used as a climate agent to predict the changes of the climate trend in Δ2030s by gauged and ungauged stations. There were five predictors set have been selected to form the local climate at the region which provided by NCEP (validated) and CanESM2-RCP4.5 (projected). According to the statistical analyses, the SDSM was controlled to produce reliable validated results with lesser %MAE (<23%) and higher R. The projected rainfall was suspected to decrease 14% in Δ2030s. All the RCPs agreed the long term rainfall pattern was consistent to the historical with lower annual rainfall intensity. The RCP8.5 shows the least rainfall changes. These findings then used to compare the accuracy of monthly rainfall at control station (Stn 2). The GIS-Kriging method being as an interpolation agent was successfully to produce similar rainfall trend with the control station. The accuracy was estimated to reach 84%. Comparing between ungauged and gauged stations, the small %MAE in the projected monthly results between gauged and ungauged stations as a proved the integrated SDSM-GIS model can producing a reliable long-term rainfall generation at ungauged station.
  13. Rohaizar MH, Sepeai S, Surhada N, Ludin NA, Ibrahim MA, Sopian K, et al.
    Heliyon, 2019 Nov;5(11):e02790.
    PMID: 31768436 DOI: 10.1016/j.heliyon.2019.e02790
    Continuing trend in silicon wafer thickness directed at cost reduction approaches basic boundaries created by: (a) mismatch between Al paste and Si wafer thermal expansion and (b) incomplete optical absorption. With its symmetrical front and back electrical contacts, the bifacial solar cell setup reduces stress due to mismatch thermal expansion, decreases metal use and increases high temperature efficiency. Efficiency improvement is accomplished in bifacial solar cells by capturing light from the back surface. Partially transparent wafers provide an option to improve near-infrared radiation absorption within Si wafer. To fully absorb optical radiation, three-dimensional texture of these kinds of wafers is essential. Pulsed laser interactions, thermal oxidation, and wet chemical etching are included in this research. A feature of its energy and pattern setup is the interaction of pulsed laser with Si, running at 1.064 μm wavelength and micro-second length. Two experimental settings were explored: (a) post-laser chemical etching with potassium hydro-oxide etching with thermal oxide as etching mask and (b) post-laser heat Si surface oxidation. Due to fast melting and recrystallization, laser pulsed processing inherently produces its own texture. Some of these spherically-shaped, randomly focused characteristics improve inner scattering and boost near-infrared absorption within the wafer. These characteristics are separated during chemical etching with the thermally-grown oxide layer as an etch mask. Comparison of optical absorption in both surfaces shows almost a rise in the magnitude of absorption in non-etched surfaces. Detailed optical (optical microscope and IR absorption), morphological (field emission scanning electron microscope) and heat imaging (far IR camera) analyses were performed to comprehend physical processes that contribute to near-IR absorption improvement. Such kinds of partially-transparent, three-dimensional textured Si wafers are anticipated to discover applications for bifacial solar cells as substrates.
  14. Subramaniam V, Wasiuzzaman S
    Heliyon, 2019 Oct;5(10):e02664.
    PMID: 31687507 DOI: 10.1016/j.heliyon.2019.e02664
    The relationship between geographical diversification (GDI) and profitability (ROA) has yielded mixed findings across various developed countries. This study re-examined the relationship using data of public firms listed on the main market of Bursa Malaysia for the period of 2010-2014 using quantile regression approach. The firms are categorised into small firms and large firms based on the firm size median value. The empirical results show that GDI affects ROA heterogeneously in various quantile levels of the ROA for all firms, small firms and large firms. GDI significantly (positive relationship) influences ROA in the middle quantile region (from quantile 0.25 to 0.75) for all firms, in the low quantile region (from quantile 0.1 to 0.5) for the sample of small firms and in the high quantile region (from quantile 0.5 to 0.9) for the sample of large firms. Therefore, GDI activities could benefit firms, provided that the activities are conducted wisely by taking into account the profitability levels of firms as well as the size of firms. This study contributes to literature on geographical diversification by providing empirical support in the context of an emerging market.
  15. Bapat RA, Dharmadhikari S, Chaubal TV, Amin MCIM, Bapat P, Gorain B, et al.
    Heliyon, 2019 Oct;5(10):e02544.
    PMID: 31687479 DOI: 10.1016/j.heliyon.2019.e02544
    Dendrimers are hyperbranched nanoparticle structures along with its surface modifications can to be used in dental biomaterials for biomimetic remineralisation of enamel and dentin. The review highlights the therapeutic applications of dendrimers in the field of dentistry. It addresses the possible mechanisms of enhancement of mechanical properties of adhesives and resins structure. Dendrimers due to its unique construction of possessing inner hydrophobic and outer hydrophilic structure can act as drug carrier for delivery of antimicrobial drugs for treatment of periodontal diseases and at peripheral dental implant areas. Dendrimers due to its hyperbranched structures can provides a unique drug delivery vehicle for delivery of a drug at specific site for sustained release for therapeutic effects. Thus, dendrimers can be one of the most important constituents which can be incorporated in dental biomaterials for better outcomes in dentistry.
  16. Mohammed BS, Haruna S, Wahab MMA, Liew MS, Haruna A
    Heliyon, 2019 Sep;5(9):e02255.
    PMID: 31687531 DOI: 10.1016/j.heliyon.2019.e02255
    In this present experimental study, geopolymer cement is developed using high calcium fly ash and used in the production of one-part alkali-activated binders. At 8-16 percent of the total precursor materials, the HCFA was activated with anhydrous sodium metasilicate powder and cured in ambient condition. Five mixtures of one-part geopolymer paste were intended at a steady w/b proportion. Density, flowability, setting time, compressive strength, splitting tensile strength and molar ratio impact were envisaged. It was observed that the setting time of the designed one-part geopolymer paste decreases with higher activator content. The experimental findings showed that the resistance of one-part geopolymer cement paste increases with comparatively greater activator content. However, raising the granular activator beyond 12 percent by fly ash weight decreases the strength and workability of the established one-part geopolymer cement. The optimum mix by weight of the fly ash was discovered to be 12 percent (i.e. 6 percent Na2O). At 28 days of curing, one-part alkali-activated paste recorded the greatest compressive strength of almost 50 MPa. The density of the one-part geopolymer paste is nearly the same regardless of the mixes. Microstructural assessment by FESEM, FTIR and XRD has shown that the established geopolymer paste includes quartz, pyrrhotite, aluminosilicate sodium and hydrate gels of calcium aluminosilicate. Based on the experimental information acquired, it can be deduced that the strength growth of one-part geopolymer cement is similar to that of Portland cement.
  17. Fatimah I, Prakoso NI, Sahroni I, Musawwa MM, Sim YL, Kooli F, et al.
    Heliyon, 2019 Nov;5(11):e02766.
    PMID: 31844705 DOI: 10.1016/j.heliyon.2019.e02766
    In this work, TiO2/SiO2 composite photocatalysts were prepared using biogenic silica extracted from bamboo leaves and titanium tetraisopropoxide as a titania precursor via a sol-gel mechanism. A study of the physicochemical properties of materials as a function of their titanium dioxide content was conducted using Fourier transform infrared spectroscopy, a scanning electron microscope, a diffuse reflectance ultraviolet-visible (UV-vis) spectrophotometer, and a gas sorption analyzer. The relationship between physicochemical parameters and photocatalytic performance was evaluated using the methylene blue (MB) photocatalytic degradation process under UV irradiation with and without the addition of H2O2 as an oxidant. The results demonstrated that increasing the TiO2 helps enhance the parameters of specific surface area, the pore volume, and the particle size of titanium dioxide, while the band gap energy reaches a maximum of 3.21 eV for 40% and 60% Ti content. The composites exhibit photocatalytic activity with the MB degradation with increasing photocatalytic efficiency since the composites with 40 and 60% wt. of TiO2 demonstrated the higher degradation rate compared with TiO2 in the presence and absence of H2O2. This higher rate is correlated with the higher specific surface area and band gap energy compared with those of TiO2.
  18. Kusuma SAF, Parwati I, Rostinawati T, Yusuf M, Fadhlillah M, Ahyudanari RR, et al.
    Heliyon, 2019 Nov;5(11):e02741.
    PMID: 31844694 DOI: 10.1016/j.heliyon.2019.e02741
    MPT64 is a specific protein that is secreted by Mycobacterium tuberculosis complex (MTBC). The objective of this study was to obtain optimum culture conditions for MPT64 synthetic gene expression in Escherichia coli BL21 (DE3) by response surface methodology (RSM). The RSM was undertaken to optimize the culture conditions under different cultivation conditions (medium concentration, induction time and inducer concentration), designed by the factorial Box-Bhenken using Minitab 17 statistical software. From the randomized combination, 15 treatments and three center point repetitions were obtained. Furthermore, expression methods were carried out in the flask scale fermentation in accordance with the predetermined design. Then, the MPT64 protein in the cytoplasm of E. coli cell was isolated and characterized using sodium dodecyl sulfate polyacrilamide electrophoresis (SDS-PAGE) then quantified using the ImageJ program. The optimum conditions were two-fold medium concentration (tryptone 20 mg/mL, yeast extract 10 mg/mL, and sodium chloride 20 mg/mL), 5 h of induction time and 4 mM rhamnose. The average concentration of recombinant MPT64 at optimum conditions was 0.0392 mg/mL, higher than the predicted concentration of 0.0311 mg/mL. In conclusion, the relationship between the selected optimization parameters strongly influenced the level of MPT64 gene expression in E. coli BL21 (DE3).
  19. Andiappan V, Benjamin MFD, Tan RR, Ng DKS
    Heliyon, 2019 Oct;5(10):e02594.
    PMID: 31720447 DOI: 10.1016/j.heliyon.2019.e02594
    Designers of energy systems often face challenges in balancing the trade-off between cost and reliability. In literature, several papers have presented mathematical models for optimizing the reliability and cost of energy systems. However, the previous models only addressed reliability implicitly, i.e., based on availability and maintenance planning. Others focused on allocation of reliability based on individual equipment requirements via non-linear models that require high computational effort. This work proposes a novel mixed-integer linear programming (MILP) model that combines the use of both input-output (I-O) modelling and linearized parallel system reliability expressions. The proposed MILP model can optimize the design and reliability of energy systems based on equipment function and operating capacity. The model allocates equipment with sufficient reliability to meet system functional requirements and determines the required capacity. A simple pedagogical example is presented in this work to illustrate the features of proposed MILP model. The MILP model is then applied to a polygeneration case study consisting of two scenarios. In the first scenario, the polygeneration system was optimized based on specified reliability requirements. The technologies chosen for Scenario 1 were the CHP module, reverse osmosis unit and vapour compression chiller. The total annualized cost (TAC) for Scenario 1 was 53.3 US$ million/year. In the second scenario, the minimum reliability level for heat production was increased. The corresponding results indicated that an additional auxiliary boiler must be operated to meet the new requirements. The resulting TAC for the Scenario 2 was 5.3% higher than in the first scenario.
  20. Shafii NZ, Saudi ASM, Pang JC, Abu IF, Sapawe N, Kamarudin MKA, et al.
    Heliyon, 2019 Oct;5(10):e02534.
    PMID: 31667387 DOI: 10.1016/j.heliyon.2019.e02534
    There has been a growing concern on the rising of environmental issues in Malaysia over the last decade. Many environmental studies conducted in this country began to utilise the chemometrics techniques to overcome the limitation in the environmental monitoring studies. Chemometrics becomes an important tool in environmental fields to evaluate the relationship of various environmental variables particularly in a large and complex database. The review aimed to analyse and summarize the current evidences and limitations on the application of chemometrics techniques in the environmental studies in Malaysia. The study performed a comprehensive review of relevant scientific journals concerning on the major environmental issues in the country, published between 2013 and 2017. A total of 29 papers which focused on the environmental issues were reviewed. Available evidences suggested that chemometrics techniques have a greater accuracy, flexibility and efficiency to be applied in environmental modelling. It also reported that chemometrics techniques are more practical for cost effective and time management in sampling and monitoring purposes. However, chemometrics is relatively new in environmental field in Malaysia and various scopes need to be considered in the future as the current studies focused on very limited number of major environmental issues. Overall, chemometrics techniques have a lot of advantages in solving environmental problems. The development of chemometrics in environmental studies in the country is necessary to advance understanding, thus able to produce more significant impacts towards the effective environmental management.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links