Displaying publications 101 - 120 of 133 in total

Abstract:
Sort:
  1. Rengasamy N, Othman RY, Che HS, Harikrishna JA
    J Sci Food Agric, 2022 Jan 15;102(1):299-311.
    PMID: 34091912 DOI: 10.1002/jsfa.11359
    BACKGROUND: Stevia rebaudiana is a high value crop due to the strong commercial demand for its metabolites (steviol glycosides) but has limited geographical cultivation range. In non-native environments with different daylength and light quality, Stevia has low germination rates and early flowering resulting in lower biomass and poor yield of the desired metabolites. In this study, artificial lighting with light-emitting diodes (LEDs) was used to determine if different light quality within and outside of the photosynthetically active radiation (PAR) range can be used to improve germination rates and yields for production of steviol glycosides for the herbal supplement and food industry.

    RESULTS: Plants treated with red and blue light at an intensity of 130 μmol m-2  s-1 supplemented with 5% of UV-A light under a 16-h photoperiod produced the most desirable overall results with a high rate of germination, low percentage of early flowering, and high yields of dry leaf, stevioside and rebaudioside A, 175 days after planting.

    CONCLUSION: While red and blue light combinations are effective for plant growth, the use of supplemental non-PAR irradiation of UV-A wavelength significantly and desirably delayed flowering, enhanced germination, biomass, rebaudioside A and stevioside yields, while supplemental green light improved yield of biomass and rebaudioside A, but not stevioside. Overall, the combination of red, blue and UV-A light resulted in the best overall productivity for Stevia rebaudiana. © 2021 Society of Chemical Industry.

  2. Tee YK, Bariah K, Hisyam Zainudin B, Samuel Yap KC, Ong NG
    J Sci Food Agric, 2022 Mar 15;102(4):1576-1585.
    PMID: 34405409 DOI: 10.1002/jsfa.11494
    BACKGROUND: Cacao beans are rich sources of polyphenols with an abundance of flavonoids and methylxanthines that have positive influences on human health. The main factors affecting the formation of flavor as well as the chemical and bioactive composition of cacao beans are cacao pod maturity and post-harvest fermentation. The purpose of this research was to evaluate the effects of pod harvest maturity (mature and ripe) and post-fermentation period (1, 3, and 5 days in a controlled temperature environment) measured by pre-harvest maturity indices, post-harvest quality tests, chemical measurements, and organoleptic evaluation.

    RESULTS: As pods developed, flavonol accumulated while nitrogen content degraded. Mature pods produced beans with a higher flavonol, catechin, and total phenolic content (TPC). As fermentation progressed, the beans' fat, TPC, antioxidant activity, and catechin content increased, regardless of pod maturity at harvest. Free fatty acid (FFA) levels were highest in 5 day fermented beans. The 3 day fermented beans contained significantly higher epicatechin, with lower FFA content. Chocolate made from mature beans with 3 day fermentation was more pleasant as it scored the highest in flavor intensity and complexity and the lowest in acidity and astringency.

    CONCLUSION: This study suggests that cacao pods harvested at the mature stage with further fermentation for 3 days under controlled temperatures produce specialty beans with potential health benefits. © 2021 Society of Chemical Industry.

  3. Li X, Nian BB, Tan CP, Liu YF, Xu YJ
    J Sci Food Agric, 2021 Nov 17.
    PMID: 34786719 DOI: 10.1002/jsfa.11659
    BACKGROUND: Deep-frying oil has been found to cause inflammatory bowel disease (IBD). However, the molecular mechanism of the effect of deep-frying palm oil on IBD still remains undetermined.

    RESULTS: In the present study, bioinformatics and cell biology were used to investigate the functions and signal pathway enrichments of differentially expressed genes. The bioinformatics analysis of three original microarray datasets (GSE73661, GSE75214 and GSE126124) in the NCBI-Gene Expression Omnibus database showed 17 down-regulated genes (logFC  0) existed in the enteritis tissue. Meanwhile, pathway enrichment and protein-protein interaction network analysis suggested that IBD is relevant to cytotoxicity, inflammation and apoptosis. Furthermore, Caco-2 cells were treated with the main oxidation products of deep-frying oil-total polar compounds (TPC) and its components (polymerized triglyceride, oxidized triglycerides and triglyceride degradation products) isolated from deep-frying oil. The flow cytometry experiment revealed that TPC and its components could induce apoptosis, especially for oxidized triglyceride. A quantitative polymerase chain reaction analysis demonstrated that TPC and its component could induce Caco-2 cell apoptosis through AQP8/CXCL1/TNIP3/IL-1.

    CONCLUSION: The present study provides fundamental knowledge for understanding the effects of deep-frying oils on the cytotoxic and inflammatory of Caco-2 cells, in addition to clarifying the molecular function mechanism of deep-frying oil in IBD. © 2021 Society of Chemical Industry.

  4. Habibiasr M, Noriznan Mokhtar M, Nordin Ibrahim M, Md Yunos KF, Amri Ibrahim N
    J Sci Food Agric, 2022 Jan 08.
    PMID: 34997572 DOI: 10.1002/jsfa.11753
    BACKGROUND: Palm kernel is the edible seed of the oil palm fruit obtained during the palm oil milling process. For efficient processing and storage, the moisture content of palm kernel must be reduced to an optimal level by drying. This study aimed to see how drying influenced the physical structure and physicochemical properties of palm kernel and oil. Before and after drying, the free fatty acid (FFA), colors, fatty acid composition, FTIR, thermal property, and structure of palm kernel were investigated.

    RESULTS: Results show that drying significantly (p

  5. Zulkifli N, Hashim N, Harith HH, Mohamad Shukery MF, Onwude DI
    J Sci Food Agric, 2021 Nov 20.
    PMID: 34802158 DOI: 10.1002/jsfa.11669
    BACKGROUND: Evaluation of the quality properties of papaya becomes essential due to the acceleration of the fruit shelf-life senescence and the deterioration factor of the expected postharvest operations. In this study, the colour features in RGB, normalised RGB, HSV and L*a*b* channels were extracted and correlated with mechanical properties, moisture content (MC), total soluble solids (TSS), and pH for the prediction of quality properties at five ripening stages of papaya (R1- R5).

    RESULTS: The mean values of colour features in RGB R m , G m , B m , normalised RGB R nm , G nm , B nm HSV H m , S m , V m , and L*a*b* L m , a m , b m were the best estimator for predicting TSS with R2 ≥ 0.90. All colour channels also showed satisfactory accuracies of R2 ≥ 0.80 in predicting the bioyield force, apparent modulus and mean force. The highest average classification accuracy was obtained using LDA with an average accuracy of more than 82%. The study showed that LDA, LSVM, QDA and QSVM obtained the correct classification of up to 100% for R5, whereas R1, R2, R3 and R4 gave classification accuracies in the range between 83.75-91.85%, 85.6-90.25%, 85.75-90.85% and 77.35-87.15% respectively. This indicates R5 colour information was obviously different from R1-R4. The mean values of the HSV channel indicated the best performance to predict the ripening stages of papaya, compared to RGB, normalised RGB and L*a*b*channels, with an average classification accuracy of more than 80%.

    CONCLUSION: The study has shown the versatility of a machine vision system in predicting the quality changes in papaya. The results showed that the machine vision system can be used to predict the ripening stages as well as classifying the fruits into different ripening stages of papayas. This article is protected by copyright. All rights reserved.

  6. Andrew J, Ismail NW, Djama M
    J Sci Food Agric, 2018 Jan;98(1):12-17.
    PMID: 28898466 DOI: 10.1002/jsfa.8666
    The application of agricultural biotechnology attracts the interest of many stakeholders. Genetically modified (GM) crops, for example, have been rapidly increasing in production for the last 20 years. Despite their known benefits, GM crops also pose many concerns not only to human and animal health but also to the environment. Malaysia, in general, allows the use of GM technology applications but it has to come with precautionary and safety measures consistent with the international obligations and domestic legal frameworks. This paper provides an overview of GM crop technology from international and national context and explores the governance and issues surrounding this technology application in Malaysia. Basically, GM research activities in Malaysia are still at an early stage of research and development and most of the GM crops approved for release are limited for food, feed and processing purposes. Even though Malaysia has not planted any GM crops commercially, actions toward such a direction seem promising. Several issues concerning GM crops as discussed in this paper will become more complex as the number of GM crops and varieties commercialised globally increase and Malaysia starts to plant GM crops. © 2017 Society of Chemical Industry.
  7. Nurulhuda K, Gaydon DS, Jing Q, Zakaria MP, Struik PC, Keesman KJ
    J Sci Food Agric, 2018 Feb;98(3):865-871.
    PMID: 28940491 DOI: 10.1002/jsfa.8683
    Extensive modelling studies on nitrogen (N) dynamics in flooded soil systems have been published. Consequently, many N dynamics models are available for users to select from. With the current research trend, inclined towards multidisciplinary research, and with substantial progress in understanding of N dynamics in flooded soil systems, the objective of this paper is to provide an overview of the modelling concepts and performance of 14 models developed to simulate N dynamics in flooded soil systems. This overview provides breadth of knowledge on the models, and, therefore, is valuable as a first step in the selection of an appropriate model for a specific application. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
  8. Ramli NAS, Mohd Noor MA, Musa H, Ghazali R
    J Sci Food Agric, 2018 Jul;98(9):3351-3362.
    PMID: 29250790 DOI: 10.1002/jsfa.8839
    BACKGROUND: Palm oil is one of the major oils and fats produced and traded worldwide. The value of palm oil products is mainly influenced by their quality. According to ISO 17025:2005, accredited laboratories require a quality control procedure with respect to monitoring the validity of tests for determination of quality parameters. This includes the regular use of internal quality control using secondary reference materials. Unfortunately, palm oil reference materials are not currently available. To establish internal quality control samples, the stability of quality parameters needs to be evaluated.

    RESULTS: In the present study, the stability of quality parameters for palm oil products was examined over 10 months at low temperature storage (6 ± 2 °C). The palm oil products tested included crude palm oil (CPO); refined, bleached and deodorized (RBD) palm oil (RBDPO); RBD palm olein (RBDPOo); and RBD palm stearin (RBDPS). The quality parameters of the oils [i.e. moisture content, free fatty acid content (FFA), iodine value (IV), fatty acids composition (FAC) and slip melting point (SMP)] were determined prior to and throughout the storage period. The moisture, FFA, IV, FAC and SMP for palm oil products changed significantly (P  0.05). The stability study indicated that the quality of the palm oil products was stable within the specified limits throughout the storage period at low temperature.

    CONCLUSION: The storage conditions preserved the quality of palm oil products throughout the storage period. These findings qualify the use of the palm oil products CPO, RBDPO, RBDPOo and RBDPS as control samples in the validation of test results. © 2017 Society of Chemical Industry.

  9. Mohamad NA, Mustafa S, Khairil Mokhtar NF, El Sheikha AF
    J Sci Food Agric, 2018 Sep;98(12):4570-4577.
    PMID: 29505123 DOI: 10.1002/jsfa.8985
    BACKGROUND: The pharmaceutical industry has boosted gelatin consumption worldwide. This is supported by the availability of cost-effective gelatin production from porcine by-products. However, cross-contamination of gelatin materials, where porcine gelatin was unintentionally included in the other animal sources of gelatin, has caused significant concerns about halal authenticity. The real-time polymerase chain reaction (PCR) has enabled a highly specific and sensitive animal species detection method in various food products. Hence, such a technique was employed in the present study to detect and quantify porcine DNA in gelatin using a molecular beacon probe, with differences in performance between mitochondrial (cytochrome b gene) and chromosomal DNA-(MPRE42 repetitive element) based porcine-specific PCR assays being compared.

    RESULTS: A higher sensitivity was observed in chromosomal DNA (MPRE-PCR assay), where this assay allows the detection of gelatin DNA at amounts as as low as 1 pg, whereas mitochondrial DNA (CBH-PCR assay) can only detect at levels down to 10 pg of gelatin DNA. When an analysis with commercial gelatin and gelatin capsule samples was conducted, the same result was observed, with a significantly more sensitive detection being provided by the repetitive element of chromosomal DNA.

    CONCLUSION: The present study has established highly sensitive DNA-based porcine detection systems derived from chromosomal DNA that are feasible for highly processed products such as gelatin and gelatin capsules containing a minute amount of DNA. This sensitive detection method can also be implemented to assist the halal authentication process of various food products available on the market. © 2018 Society of Chemical Industry.

  10. Zzaman W, Bhat R, Yang TA, Easa AM
    J Sci Food Agric, 2017 Oct;97(13):4429-4437.
    PMID: 28251656 DOI: 10.1002/jsfa.8302
    BACKGROUND: Roasting is one of the important unit operations in the cocoa-based industries in order to develop unique flavour in products. Cocoa beans were subjected to roasting at different temperatures and times using superheated steam. The influence of roasting temperature (150-250°C) and time (10-50 min) on sugars, free amino acids and volatile flavouring compounds were investigated.

    RESULTS: The concentration of total reducing sugars was reduced by up to 64.61, 77.22 and 82.52% with increased roasting temperature at 150, 200 and 250°C for 50 min, respectively. The hydrophobic amino acids were reduced up to 29.21, 36.41 and 48.87% with increased roasting temperature at 150, 200 and 250°C for 50 min, respectively. A number of pyrazines, esters, aldehydes, alcohols, ketones, carboxyl acids and hydrocarbons were detected in all the samples at different concentration range. Formation of the most flavour active compounds, pyrazines, were the highest concentration (2.96 mg kg-1 ) at 200°C for 10 min.

    CONCLUSION: The superheated steam roasting method achieves the optimum roasting condition within a short duration Therefore, the quality of cocoa beans can be improved using superheated steam during the roasting process. © 2017 Society of Chemical Industry.

  11. Liu Q, Wu TY, Tu W, Pu L
    J Sci Food Agric, 2023 Jan 30;103(2):908-916.
    PMID: 36067269 DOI: 10.1002/jsfa.12202
    BACKGROUND: Relieving serious non-point source pollution of nitrogen (N), phosphorus (P), and potassium (K) is an urgent task in China. It is necessary to explore the changing characteristics of chemical fertilization intensity (FI) and efficiency to provide references. A new method of 'relative productivity proportion weight', which was simpler than data envelope analysis, was proposed to construct models of fertilizer allocation efficiency (FAE) and chemical fertilizer integrated efficiency (FIE) by considering NPK multi-inputs and the grain output scale, respectively.

    RESULTS: During 1980-2014, the FIs of NPK chemical fertilizers in China showed a significant growing trend. After reaching the highest value of 339 kg ha-1 in 2014, FIs were reduced to 303 kg ha-1 in 2019, higher than the 225 kg ha-1 maximum safe usage internationally recognized. Meanwhile, the pattern of change of FAE was one of 'decreasing to increasing', with values of 1 in 1980, 0.66 in 2003, and 0.80 in 2019. FIE basically showed an increasing trend, which could be divided into three stages: the first stage of low efficiency during 1980-2009, the second stage of medium efficiency after 2010, and the third stage of high efficiency after 2018.

    CONCLUSION: From 1980 until 2019, a reduction of FAE from 1 to 0.80 with an average of 0.75 was observed in China. FIE was found between 0.65 and 0.85 and had the potential of upgrading by 15-35%. Therefore, China needs to improve the fertilizer use efficiency in order to strive for negative growth of chemical fertilizer intensity and ecological agriculture construction. © 2022 Society of Chemical Industry.

  12. Adiiba SH, Chan ES, Lee YY, Amelia, Chang MY, Song CP
    J Sci Food Agric, 2022 Dec;102(15):6921-6929.
    PMID: 35662022 DOI: 10.1002/jsfa.12053
    BACKGROUND: Crude palm oil (CPO) is rich with phytonutrients such as carotenoids and tocols which possesses many health benefits. The aim of this research was to develop a methanol-free process to produce palm phytonutrients via enzymatic hydrolysis. In this work, triacylglycerol was hydrolyzed into free fatty acids (FFAs) using three different types of liquid lipases derived from Aspergillus oryzae (ET 2.0), Aspergillus niger (Habio) and Candida antartica (CALB).

    RESULTS: ET 2.0 was found to be the best enzyme for hydrolysis. Under the optimum condition, the FFA content achievable was 790 g kg-1 after 24 h of reaction with 1:1 water-to-oil mass ratio at 50 °C and stirring speed of 9 × g. Furthermore, with the addition of 2 g kg-1 ascorbic acid, it was found that 98% of carotenoids and 96% of tocols could be retained after hydrolysis.

    CONCLUSION: This work shows that enzymatic hydrolysis, which is inherently safer, cleaner and sustainable is feasible to replace the conventional methanolysis for the production of palm phytonutrients. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  13. Chong SG, Ismail IS, Ahmad Azam A, Tan SJ, Shaari K, Tan JK
    J Sci Food Agric, 2023 Apr;103(6):3146-3156.
    PMID: 36426592 DOI: 10.1002/jsfa.12355
    BACKGROUND: Soybeans (Glycine max) are high in proteins and isoflavones, which offer many health benefits. It has been suggested that the fermentation process enhances the nutrients in the soybeans. Organic foods are perceived as better than non-organic foods in terms of health benefits, yet little is known about the difference in the phytochemical content that distinguishes the quality of organic soybeans from non-organic soybeans. This study investigated the chemical profiles of non-organic (G, T, U, UB) and organic (C, COF, A, R, B, Z) soybeans (G. max [L.] Merr.) and their metabolite changes after fermentation with Rhizopus oligosporus.

    RESULTS: A clear separation was only observed between non-organic G and organic Z, which were then selected for further investigation in the fermentation of soybeans (GF and ZF). All four groups (G, Z, GF, ZF) were analyzed using nuclear magnetic resonance (NMR) spectroscopy along with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this way a total of 41 and 47 metabolites were identified respectively, with 12 in common. A clear variation (|log1.5 FC| > 2 and P 

  14. Abdul Manan SF, Li J, Hsieh CF, Faubion J, Shi YC
    J Sci Food Agric, 2022 Mar 30;102(5):2172-2178.
    PMID: 34498279 DOI: 10.1002/jsfa.11523
    BACKGROUND: Lipids account for 2.0-2.5% of wheat flour by dry weight and affect properties and quality of cereal foods. A new method was developed to extract non-starch lipids from wheat flour. Wheat flour was first hydrolyzed with a protease and followed by extraction of non-starch lipids by water-saturated butanol (WSB).

    RESULT: Protein hydrolysis by protease followed by extraction of non-starch lipids with WSB increased yield to 1.9 ± 0.3% from 1.0 ± 0.1% with no protease treatment. The lipid profile showed a significant increase in phospholipid compounds extracted with protease hydrolysis (5.9 ± 0.8 nmol·g-1 ) versus without enzymatic treatment (2.4 ± 1.3 nmol g-1 ).

    CONCLUSION: Improved lipid extraction yield and phospholipid compounds following protease-assisted extraction method provided additional insight towards the understanding of protein-lipid interaction in wheat flour. The new protease-assisted extraction method may be applied to analyzing non-starch lipids in other types of wheat flours and other cereal flours. © 2021 Society of Chemical Industry.

  15. Adegbusi HS, Ismail A, Mohd Esa N, Mat Daud ZA
    J Sci Food Agric, 2022 Dec;102(15):6961-6973.
    PMID: 35672266 DOI: 10.1002/jsfa.12057
    BACKGROUND: Plant-based complementary foods (CFs) supply insufficient amount of nutrients to meet recommended nutrient intakes for 6-23-month-old children. The present study determined the nutritional quality of CFs formulated from blends of Nigerian yellow maize (Zea mays), soybean (Glycine max) and crayfish (Procambarus clarkii). Three CFs were formulated; namely, maize flour (MF, 100:0% w/w), blends of maize and soybean flour (MSF, 72:28% w/w), and maize, soybean and crayfish flour (MSCF, 80:10:10% w/w). Nutritional quality was evaluated using analyses of chemical composition of CFs and of protein quality of complementary food diets. Data were compared by multivariate analysis of variance and significantly differentiated. Nine selected nutritional criteria were used to decide the CF that had best nutritional characteristics compared to MF and fortified wheat flour (FWMF).

    RESULTS: Total scores obtained from the selected nutritional criteria ranked MSCF, with total score of 15, as the lowest and thus it was considered to have the most desirable nutritional characteristics compared to MF, MSF and FWMF, which had respective total scores of 31, 22 and 20.

    CONCLUSION: Conclusively, MSCF may serve as a better alternative CF for MF, MSC and FWMF. The present study has produced a potential alternative cost-effective and adequate CF, formulated from crayfish (P. clarkii) supplementation of locally available blend of yellow maize (Z. mays) and soybean (G. max), for the poor human population, aiming to encourage the consumption of animal-sourced CF for alleviating the prevalence of childhood undernutrition. © 2022 Society of Chemical Industry.

  16. Han C, Zheng Y, Wang L, Zhou C, Wang J, He J, et al.
    J Sci Food Agric, 2023 May;103(7):3334-3345.
    PMID: 36786016 DOI: 10.1002/jsfa.12499
    BACKGROUND: Extracted proteins of alternative animal origin tend to present strong off-flavor perception due to physicochemical interactions of coextracted off-flavor compounds with proteins. To investigate the relationship between absorption behaviors of volatile aromas and the processes-induced variations in protein microstructures and molecular conformations, duck liver protein isolate (DLp) was subjected to heating (65/100 °C, 15 min) and ultra-high pressure (UHP, 100-500 MPa/10 min, 28 °C) treatments to obtain differential unfolded protein states.

    RESULTS: Heat and UHP treatments induced the unfolding of DLp to varied degrees, as revealed by fluorescence spectroscopy, ultraviolet-visible absorption, circular dichroism spectra and surface hydrophobicity measurements. Two types of heating-denatured states with varied unfolding degrees were obtained, while UHP at both levels of 100/500 MPa caused partial unfolding of DLp and the presence of a molten-globule state, which significantly enhanced the binding affinity between DLp and (E,E)-2,4-heptadienal. In particular, significantly modified secondary structures of DLp were observed in heating-denatured samples. Excessive denaturing and unfolding degrees resulted in no significant changes in the absorption behavior of the volatile ligand, as characterized by observations of fluorescence quenching and analysis of headspace concentrations.

    CONCLUSION: Defining process-induced conformational transition behavior of matrix proteins could be a promising strategy to regulate food flavor attributes and, particularly, to produce DLp coextracted with limited off-flavor components by modifying their interaction during extraction processes. © 2023 Society of Chemical Industry.

  17. Soo YT, Ng SW, Tang TK, Ab Karim NA, Phuah ET, Lee YY
    J Sci Food Agric, 2021 Aug 15;101(10):4161-4172.
    PMID: 33428211 DOI: 10.1002/jsfa.11054
    BACKGROUND: Palm pressed fibre (PPF) is a cellulose-rich biomass residue produced during palm oil extraction. Its high cellulose content allows the isolation of cellulose nanocrystal (CNC). CNC has attracted scientific interest due to its biodegradability, biocompatibility and low cost. The present study isolated CNC from PPF using a cation exchange resin, which is an environmentally friendly and less harsh hydrolysis method than conventional mineral acid hydrolysis. Isolated CNC was used to stabilise an oil-in-water emulsion and the emulsion stability was evaluated in terms of droplet size, morphology and physical stability.

    RESULTS: PPF was subjected to alkali and bleach treatment prior to hydrolysis, which successfully removed 54% and 75% of non-cellulosic components (hemicellulose and lignin, respectively). Hydrolysis conditions of 5 h, 15:1 (w/w) resin-to-pulp ratio and 50 °C produced CNC particles of 50-100 nm in length. CNC had a crystallinity index of 42% and appeared rod-like morphologically. CNC-stabilised emulsion had better stability when used in combination with soy lecithin (SL), a well-established, commonly used food stabiliser. Emulsion stabilised by the binary mixture of CNC and SL had droplet size, morphology and physical stability comparable to those of emulsion stabilised using SL.

    CONCLUSIONS: CNC was successfully isolated from PPF through a cation exchange resin. This offers an alternative usage for the underutilised PPF to be converted into value-added products. Isolated CNC was also found to have promising potential in the stabilisation of Pickering emulsions. These results provide useful information indicating CNC as a natural and sustainable stabiliser for food, cosmeceutical and pharmaceutical applications. © 2021 Society of Chemical Industry.

  18. Phuangjit U, Klinkesorn U, Tan CP, Katekhong W
    J Sci Food Agric, 2024 Jan 15;104(1):383-390.
    PMID: 37595024 DOI: 10.1002/jsfa.12929
    BACKGROUND: Silkworm protein applications are limited in the food industry because of their low emulsifying and foaming properties. This study investigated the effect of ultrasound-assisted extraction (UAE) for 15 and 30 min, microwave-assisted extraction (MAE) for 1 and 2 min, and freeze-thaw-assisted extraction (FTAE) for one and three cycles on the yield, extraction efficiency, functional properties, and antioxidant activities of proteins from silkworm pupae. Relationships of protein structure and functionality were also examined.

    RESULTS: UAE for 15 and 30 min and MAE for 1 and 2 min significantly increased protein yield and extraction efficiency compared to the control. Both UAE and MAE processes, especially MAE for 2 min, greatly improved the emulsifying and foaming properties of extracted proteins. FTAE one and three cycles did not increase the protein yield and extraction efficiency but showed enhanced functional properties, especially foaming. All samples showed changes in protein structure, such as increased exposed sulfhydryl (SH) contents, denaturation temperatures, and enthalpy. Only MAE samples had low-molecular-weight proteins based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. UAE and FTAE samples had significantly higher antioxidant activities, while the MAE process showed the opposite.

    CONCLUSION: UAE and MAE processes improved the yield and functionality of extracted silkworm proteins, while MAE negatively impacted protein antioxidant activities. © 2023 Society of Chemical Industry.

  19. Ding K, Geng H, Guo W, Sun W, Zhan S, Lou Q, et al.
    J Sci Food Agric, 2023 Aug 30;103(11):5322-5331.
    PMID: 37016806 DOI: 10.1002/jsfa.12600
    BACKGROUND: Fish gelatin (FG) has multifunctional properties similar to mammalian gelatin (MG), and it has been recognized as the optimal alternative to MG. While its poor surface-active and gelling properties significantly limit its application values, glycosylation has been successfully used to increase surface-active properties of FG, but the influence of ultrasonic-associated glycosylation (UAG) on the gelling and structural characteristics of FG is still rarely reported. This article explores UAG (100-200 W, 0.5-1 h) with κ-carrageenan (κC) on the functional properties (emulsifying, gelling and rheological properties) and structural characteristics of FG.

    RESULTS: The longer time and higher power of ultrasonics accelerated the glycosylation reaction with an increase in glycosylation degree and browning index values. Compared with original FG, FG-κC mixture and bovine gelatin, UAG-modified FG possessed higher emulsification activity index, emulsion stability index, gel strength, hardness and melting temperature values. Among them, gelatin modified by appropriate ultrasonic conditions (200 W, 0.5 h) had the highest emulsifying and gelling properties. Rheological results showed that UAG contributed to the gelation process of gelatin with advanced gelation time and endowed it with high viscosity. Structural analysis indicated that UAG promoted κC to link with FG by the formation of covalent and hydrogen bonds, restricting more bound and immobilized water in the gels, exhibiting higher gelling properties.

    CONCLUSION: This work showed that UAG with κC is a promising method to produce high gelling and emulsifying properties of FG that could replace MG. © 2023 Society of Chemical Industry.

  20. Zhou Y, Sun Y, Pan D, Xia Q, Zhou C
    J Sci Food Agric, 2023 Aug 30;103(11):5412-5421.
    PMID: 37038882 DOI: 10.1002/jsfa.12616
    BACKGROUND: Goose meat is rough and embedded with dense connective tissue, impairing protein solubility. Therefore, to improve the functional properties of goose myofibrillar protein (GMP), ultrasound was used to assist the phosphorylation of GMP.

    RESULTS: The fact that GMP attached covalently with the phosphate group of sodium tripolyphosphate (GMP-STP) was disclosed directly by Fourier transform infrared spectroscopy. Furthermore, ultrasound significantly improved the hydrophobicity and solubility of GMP-STP, which could be attributed to the conversion of α-helix to β-sheet, β-turns, and random coils by sonication. The spatial stabilization of the protein phosphorylation process was boosted by ultrasound, making the droplets more dispersed, and thus an improvement in the functional properties of GMP-STP was observed. Water-holding capacity, oil-binding capacity, and emulsifying and foaming properties were best at an ultrasound power of 400 W.

    CONCLUSION: Ultrasound-assisted phosphorylation has great potential to modulate the structure-function relationship of proteins. © 2023 Society of Chemical Industry.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links