Displaying publications 101 - 120 of 143 in total

Abstract:
Sort:
  1. Li X, Nian BB, Tan CP, Liu YF, Xu YJ
    J Sci Food Agric, 2021 Nov 17.
    PMID: 34786719 DOI: 10.1002/jsfa.11659
    BACKGROUND: Deep-frying oil has been found to cause inflammatory bowel disease (IBD). However, the molecular mechanism of the effect of deep-frying palm oil on IBD still remains undetermined.

    RESULTS: In the present study, bioinformatics and cell biology were used to investigate the functions and signal pathway enrichments of differentially expressed genes. The bioinformatics analysis of three original microarray datasets (GSE73661, GSE75214 and GSE126124) in the NCBI-Gene Expression Omnibus database showed 17 down-regulated genes (logFC  0) existed in the enteritis tissue. Meanwhile, pathway enrichment and protein-protein interaction network analysis suggested that IBD is relevant to cytotoxicity, inflammation and apoptosis. Furthermore, Caco-2 cells were treated with the main oxidation products of deep-frying oil-total polar compounds (TPC) and its components (polymerized triglyceride, oxidized triglycerides and triglyceride degradation products) isolated from deep-frying oil. The flow cytometry experiment revealed that TPC and its components could induce apoptosis, especially for oxidized triglyceride. A quantitative polymerase chain reaction analysis demonstrated that TPC and its component could induce Caco-2 cell apoptosis through AQP8/CXCL1/TNIP3/IL-1.

    CONCLUSION: The present study provides fundamental knowledge for understanding the effects of deep-frying oils on the cytotoxic and inflammatory of Caco-2 cells, in addition to clarifying the molecular function mechanism of deep-frying oil in IBD. © 2021 Society of Chemical Industry.

  2. Habibiasr M, Noriznan Mokhtar M, Nordin Ibrahim M, Md Yunos KF, Amri Ibrahim N
    J Sci Food Agric, 2022 Jan 08.
    PMID: 34997572 DOI: 10.1002/jsfa.11753
    BACKGROUND: Palm kernel is the edible seed of the oil palm fruit obtained during the palm oil milling process. For efficient processing and storage, the moisture content of palm kernel must be reduced to an optimal level by drying. This study aimed to see how drying influenced the physical structure and physicochemical properties of palm kernel and oil. Before and after drying, the free fatty acid (FFA), colors, fatty acid composition, FTIR, thermal property, and structure of palm kernel were investigated.

    RESULTS: Results show that drying significantly (p

  3. Zulkifli N, Hashim N, Harith HH, Mohamad Shukery MF, Onwude DI
    J Sci Food Agric, 2021 Nov 20.
    PMID: 34802158 DOI: 10.1002/jsfa.11669
    BACKGROUND: Evaluation of the quality properties of papaya becomes essential due to the acceleration of the fruit shelf-life senescence and the deterioration factor of the expected postharvest operations. In this study, the colour features in RGB, normalised RGB, HSV and L*a*b* channels were extracted and correlated with mechanical properties, moisture content (MC), total soluble solids (TSS), and pH for the prediction of quality properties at five ripening stages of papaya (R1- R5).

    RESULTS: The mean values of colour features in RGB R m , G m , B m , normalised RGB R nm , G nm , B nm HSV H m , S m , V m , and L*a*b* L m , a m , b m were the best estimator for predicting TSS with R2 ≥ 0.90. All colour channels also showed satisfactory accuracies of R2 ≥ 0.80 in predicting the bioyield force, apparent modulus and mean force. The highest average classification accuracy was obtained using LDA with an average accuracy of more than 82%. The study showed that LDA, LSVM, QDA and QSVM obtained the correct classification of up to 100% for R5, whereas R1, R2, R3 and R4 gave classification accuracies in the range between 83.75-91.85%, 85.6-90.25%, 85.75-90.85% and 77.35-87.15% respectively. This indicates R5 colour information was obviously different from R1-R4. The mean values of the HSV channel indicated the best performance to predict the ripening stages of papaya, compared to RGB, normalised RGB and L*a*b*channels, with an average classification accuracy of more than 80%.

    CONCLUSION: The study has shown the versatility of a machine vision system in predicting the quality changes in papaya. The results showed that the machine vision system can be used to predict the ripening stages as well as classifying the fruits into different ripening stages of papayas. This article is protected by copyright. All rights reserved.

  4. Andrew J, Ismail NW, Djama M
    J Sci Food Agric, 2018 Jan;98(1):12-17.
    PMID: 28898466 DOI: 10.1002/jsfa.8666
    The application of agricultural biotechnology attracts the interest of many stakeholders. Genetically modified (GM) crops, for example, have been rapidly increasing in production for the last 20 years. Despite their known benefits, GM crops also pose many concerns not only to human and animal health but also to the environment. Malaysia, in general, allows the use of GM technology applications but it has to come with precautionary and safety measures consistent with the international obligations and domestic legal frameworks. This paper provides an overview of GM crop technology from international and national context and explores the governance and issues surrounding this technology application in Malaysia. Basically, GM research activities in Malaysia are still at an early stage of research and development and most of the GM crops approved for release are limited for food, feed and processing purposes. Even though Malaysia has not planted any GM crops commercially, actions toward such a direction seem promising. Several issues concerning GM crops as discussed in this paper will become more complex as the number of GM crops and varieties commercialised globally increase and Malaysia starts to plant GM crops. © 2017 Society of Chemical Industry.
  5. Nurulhuda K, Gaydon DS, Jing Q, Zakaria MP, Struik PC, Keesman KJ
    J Sci Food Agric, 2018 Feb;98(3):865-871.
    PMID: 28940491 DOI: 10.1002/jsfa.8683
    Extensive modelling studies on nitrogen (N) dynamics in flooded soil systems have been published. Consequently, many N dynamics models are available for users to select from. With the current research trend, inclined towards multidisciplinary research, and with substantial progress in understanding of N dynamics in flooded soil systems, the objective of this paper is to provide an overview of the modelling concepts and performance of 14 models developed to simulate N dynamics in flooded soil systems. This overview provides breadth of knowledge on the models, and, therefore, is valuable as a first step in the selection of an appropriate model for a specific application. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
  6. Ramli NAS, Mohd Noor MA, Musa H, Ghazali R
    J Sci Food Agric, 2018 Jul;98(9):3351-3362.
    PMID: 29250790 DOI: 10.1002/jsfa.8839
    BACKGROUND: Palm oil is one of the major oils and fats produced and traded worldwide. The value of palm oil products is mainly influenced by their quality. According to ISO 17025:2005, accredited laboratories require a quality control procedure with respect to monitoring the validity of tests for determination of quality parameters. This includes the regular use of internal quality control using secondary reference materials. Unfortunately, palm oil reference materials are not currently available. To establish internal quality control samples, the stability of quality parameters needs to be evaluated.

    RESULTS: In the present study, the stability of quality parameters for palm oil products was examined over 10 months at low temperature storage (6 ± 2 °C). The palm oil products tested included crude palm oil (CPO); refined, bleached and deodorized (RBD) palm oil (RBDPO); RBD palm olein (RBDPOo); and RBD palm stearin (RBDPS). The quality parameters of the oils [i.e. moisture content, free fatty acid content (FFA), iodine value (IV), fatty acids composition (FAC) and slip melting point (SMP)] were determined prior to and throughout the storage period. The moisture, FFA, IV, FAC and SMP for palm oil products changed significantly (P  0.05). The stability study indicated that the quality of the palm oil products was stable within the specified limits throughout the storage period at low temperature.

    CONCLUSION: The storage conditions preserved the quality of palm oil products throughout the storage period. These findings qualify the use of the palm oil products CPO, RBDPO, RBDPOo and RBDPS as control samples in the validation of test results. © 2017 Society of Chemical Industry.

  7. Mohamad NA, Mustafa S, Khairil Mokhtar NF, El Sheikha AF
    J Sci Food Agric, 2018 Sep;98(12):4570-4577.
    PMID: 29505123 DOI: 10.1002/jsfa.8985
    BACKGROUND: The pharmaceutical industry has boosted gelatin consumption worldwide. This is supported by the availability of cost-effective gelatin production from porcine by-products. However, cross-contamination of gelatin materials, where porcine gelatin was unintentionally included in the other animal sources of gelatin, has caused significant concerns about halal authenticity. The real-time polymerase chain reaction (PCR) has enabled a highly specific and sensitive animal species detection method in various food products. Hence, such a technique was employed in the present study to detect and quantify porcine DNA in gelatin using a molecular beacon probe, with differences in performance between mitochondrial (cytochrome b gene) and chromosomal DNA-(MPRE42 repetitive element) based porcine-specific PCR assays being compared.

    RESULTS: A higher sensitivity was observed in chromosomal DNA (MPRE-PCR assay), where this assay allows the detection of gelatin DNA at amounts as as low as 1 pg, whereas mitochondrial DNA (CBH-PCR assay) can only detect at levels down to 10 pg of gelatin DNA. When an analysis with commercial gelatin and gelatin capsule samples was conducted, the same result was observed, with a significantly more sensitive detection being provided by the repetitive element of chromosomal DNA.

    CONCLUSION: The present study has established highly sensitive DNA-based porcine detection systems derived from chromosomal DNA that are feasible for highly processed products such as gelatin and gelatin capsules containing a minute amount of DNA. This sensitive detection method can also be implemented to assist the halal authentication process of various food products available on the market. © 2018 Society of Chemical Industry.

  8. Zzaman W, Bhat R, Yang TA, Easa AM
    J Sci Food Agric, 2017 Oct;97(13):4429-4437.
    PMID: 28251656 DOI: 10.1002/jsfa.8302
    BACKGROUND: Roasting is one of the important unit operations in the cocoa-based industries in order to develop unique flavour in products. Cocoa beans were subjected to roasting at different temperatures and times using superheated steam. The influence of roasting temperature (150-250°C) and time (10-50 min) on sugars, free amino acids and volatile flavouring compounds were investigated.

    RESULTS: The concentration of total reducing sugars was reduced by up to 64.61, 77.22 and 82.52% with increased roasting temperature at 150, 200 and 250°C for 50 min, respectively. The hydrophobic amino acids were reduced up to 29.21, 36.41 and 48.87% with increased roasting temperature at 150, 200 and 250°C for 50 min, respectively. A number of pyrazines, esters, aldehydes, alcohols, ketones, carboxyl acids and hydrocarbons were detected in all the samples at different concentration range. Formation of the most flavour active compounds, pyrazines, were the highest concentration (2.96 mg kg-1 ) at 200°C for 10 min.

    CONCLUSION: The superheated steam roasting method achieves the optimum roasting condition within a short duration Therefore, the quality of cocoa beans can be improved using superheated steam during the roasting process. © 2017 Society of Chemical Industry.

  9. Liu Q, Wu TY, Tu W, Pu L
    J Sci Food Agric, 2023 Jan 30;103(2):908-916.
    PMID: 36067269 DOI: 10.1002/jsfa.12202
    BACKGROUND: Relieving serious non-point source pollution of nitrogen (N), phosphorus (P), and potassium (K) is an urgent task in China. It is necessary to explore the changing characteristics of chemical fertilization intensity (FI) and efficiency to provide references. A new method of 'relative productivity proportion weight', which was simpler than data envelope analysis, was proposed to construct models of fertilizer allocation efficiency (FAE) and chemical fertilizer integrated efficiency (FIE) by considering NPK multi-inputs and the grain output scale, respectively.

    RESULTS: During 1980-2014, the FIs of NPK chemical fertilizers in China showed a significant growing trend. After reaching the highest value of 339 kg ha-1 in 2014, FIs were reduced to 303 kg ha-1 in 2019, higher than the 225 kg ha-1 maximum safe usage internationally recognized. Meanwhile, the pattern of change of FAE was one of 'decreasing to increasing', with values of 1 in 1980, 0.66 in 2003, and 0.80 in 2019. FIE basically showed an increasing trend, which could be divided into three stages: the first stage of low efficiency during 1980-2009, the second stage of medium efficiency after 2010, and the third stage of high efficiency after 2018.

    CONCLUSION: From 1980 until 2019, a reduction of FAE from 1 to 0.80 with an average of 0.75 was observed in China. FIE was found between 0.65 and 0.85 and had the potential of upgrading by 15-35%. Therefore, China needs to improve the fertilizer use efficiency in order to strive for negative growth of chemical fertilizer intensity and ecological agriculture construction. © 2022 Society of Chemical Industry.

  10. Chong SG, Ismail IS, Ahmad Azam A, Tan SJ, Shaari K, Tan JK
    J Sci Food Agric, 2023 Apr;103(6):3146-3156.
    PMID: 36426592 DOI: 10.1002/jsfa.12355
    BACKGROUND: Soybeans (Glycine max) are high in proteins and isoflavones, which offer many health benefits. It has been suggested that the fermentation process enhances the nutrients in the soybeans. Organic foods are perceived as better than non-organic foods in terms of health benefits, yet little is known about the difference in the phytochemical content that distinguishes the quality of organic soybeans from non-organic soybeans. This study investigated the chemical profiles of non-organic (G, T, U, UB) and organic (C, COF, A, R, B, Z) soybeans (G. max [L.] Merr.) and their metabolite changes after fermentation with Rhizopus oligosporus.

    RESULTS: A clear separation was only observed between non-organic G and organic Z, which were then selected for further investigation in the fermentation of soybeans (GF and ZF). All four groups (G, Z, GF, ZF) were analyzed using nuclear magnetic resonance (NMR) spectroscopy along with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this way a total of 41 and 47 metabolites were identified respectively, with 12 in common. A clear variation (|log1.5 FC| > 2 and P 

  11. Abdul Manan SF, Li J, Hsieh CF, Faubion J, Shi YC
    J Sci Food Agric, 2022 Mar 30;102(5):2172-2178.
    PMID: 34498279 DOI: 10.1002/jsfa.11523
    BACKGROUND: Lipids account for 2.0-2.5% of wheat flour by dry weight and affect properties and quality of cereal foods. A new method was developed to extract non-starch lipids from wheat flour. Wheat flour was first hydrolyzed with a protease and followed by extraction of non-starch lipids by water-saturated butanol (WSB).

    RESULT: Protein hydrolysis by protease followed by extraction of non-starch lipids with WSB increased yield to 1.9 ± 0.3% from 1.0 ± 0.1% with no protease treatment. The lipid profile showed a significant increase in phospholipid compounds extracted with protease hydrolysis (5.9 ± 0.8 nmol·g-1 ) versus without enzymatic treatment (2.4 ± 1.3 nmol g-1 ).

    CONCLUSION: Improved lipid extraction yield and phospholipid compounds following protease-assisted extraction method provided additional insight towards the understanding of protein-lipid interaction in wheat flour. The new protease-assisted extraction method may be applied to analyzing non-starch lipids in other types of wheat flours and other cereal flours. © 2021 Society of Chemical Industry.

  12. Adegbusi HS, Ismail A, Mohd Esa N, Mat Daud ZA
    J Sci Food Agric, 2022 Dec;102(15):6961-6973.
    PMID: 35672266 DOI: 10.1002/jsfa.12057
    BACKGROUND: Plant-based complementary foods (CFs) supply insufficient amount of nutrients to meet recommended nutrient intakes for 6-23-month-old children. The present study determined the nutritional quality of CFs formulated from blends of Nigerian yellow maize (Zea mays), soybean (Glycine max) and crayfish (Procambarus clarkii). Three CFs were formulated; namely, maize flour (MF, 100:0% w/w), blends of maize and soybean flour (MSF, 72:28% w/w), and maize, soybean and crayfish flour (MSCF, 80:10:10% w/w). Nutritional quality was evaluated using analyses of chemical composition of CFs and of protein quality of complementary food diets. Data were compared by multivariate analysis of variance and significantly differentiated. Nine selected nutritional criteria were used to decide the CF that had best nutritional characteristics compared to MF and fortified wheat flour (FWMF).

    RESULTS: Total scores obtained from the selected nutritional criteria ranked MSCF, with total score of 15, as the lowest and thus it was considered to have the most desirable nutritional characteristics compared to MF, MSF and FWMF, which had respective total scores of 31, 22 and 20.

    CONCLUSION: Conclusively, MSCF may serve as a better alternative CF for MF, MSC and FWMF. The present study has produced a potential alternative cost-effective and adequate CF, formulated from crayfish (P. clarkii) supplementation of locally available blend of yellow maize (Z. mays) and soybean (G. max), for the poor human population, aiming to encourage the consumption of animal-sourced CF for alleviating the prevalence of childhood undernutrition. © 2022 Society of Chemical Industry.

  13. Han C, Zheng Y, Wang L, Zhou C, Wang J, He J, et al.
    J Sci Food Agric, 2023 May;103(7):3334-3345.
    PMID: 36786016 DOI: 10.1002/jsfa.12499
    BACKGROUND: Extracted proteins of alternative animal origin tend to present strong off-flavor perception due to physicochemical interactions of coextracted off-flavor compounds with proteins. To investigate the relationship between absorption behaviors of volatile aromas and the processes-induced variations in protein microstructures and molecular conformations, duck liver protein isolate (DLp) was subjected to heating (65/100 °C, 15 min) and ultra-high pressure (UHP, 100-500 MPa/10 min, 28 °C) treatments to obtain differential unfolded protein states.

    RESULTS: Heat and UHP treatments induced the unfolding of DLp to varied degrees, as revealed by fluorescence spectroscopy, ultraviolet-visible absorption, circular dichroism spectra and surface hydrophobicity measurements. Two types of heating-denatured states with varied unfolding degrees were obtained, while UHP at both levels of 100/500 MPa caused partial unfolding of DLp and the presence of a molten-globule state, which significantly enhanced the binding affinity between DLp and (E,E)-2,4-heptadienal. In particular, significantly modified secondary structures of DLp were observed in heating-denatured samples. Excessive denaturing and unfolding degrees resulted in no significant changes in the absorption behavior of the volatile ligand, as characterized by observations of fluorescence quenching and analysis of headspace concentrations.

    CONCLUSION: Defining process-induced conformational transition behavior of matrix proteins could be a promising strategy to regulate food flavor attributes and, particularly, to produce DLp coextracted with limited off-flavor components by modifying their interaction during extraction processes. © 2023 Society of Chemical Industry.

  14. Yang Y, Cao Y, Zhang J, Fan L, Huang Y, Tan TC, et al.
    J Sci Food Agric, 2024 May;104(7):3926-3935.
    PMID: 38252625 DOI: 10.1002/jsfa.13273
    BACKGROUND: Chinese mugwort (Artemisia argyi) possesses extensive pharmacological activities associated with anti-tumour, antioxidative and anti-inflammatory effects. The present study aimed to investigate the antioxidant and anti-ageing effects of A. argyi extract (AAE) on the fruit fly (Drosophila melanogaster) ageing model by detecting antioxidant enzyme activities and the mRNA level of antioxidant genes.

    RESULTS: AAE could significantly lengthen the mean lifespan, 50% survival days, and maximum lifespan of D. melanogaster, especially when the amount of AAE added reached 6.68 mg mL-1, the mean lifespan of both female and male flies increased by 23.74% and 22.30%, respectively, indicating the effective life extension effect of AAE. At the same time, AAE could improve the climbing ability and tolerance to hydrogen peroxide in D. melanogaster. In addition, the addition of AAE effectively increased the activities of copper-zinc-containing superoxide dismutase, manganese-containing superoxide dismutase and catalase in D. melanogaster and reduced the contents of malondialdehyde. Moreover, when reared with diets containing AAE, the expression of antioxidant-related genes SOD1, SOD2 and CAT was up-regulated in D. melanogaster and down-regulated for MTH genes.

    CONCLUSION: The study indicates that AAE effectively enhances the antioxidant capacity of D. melanogaster and has potential applications as an antioxidant and anti-ageing agent in the nutraceutical industry. © 2024 Society of Chemical Industry.

  15. Ooi EZH, Ab Karim NA, Chan ES, Wang Y, Tang TK, Tong SC, et al.
    J Sci Food Agric, 2024 May;104(7):3958-3970.
    PMID: 38284502 DOI: 10.1002/jsfa.13278
    BACKGROUND: As a by-product of the palm oil industry, palm stearin is often overlooked despite having several beneficial properties, such as excellent stability, which is critically essential to meet the demand of the global food trend in producing safer processed food. Specifically, deep frying of food is often associated with the production of toxic compounds that could potentially migrate into the food system when oils are degraded under continuous heating. The incorporation of palm stearin is regarded as a cost-effective and efficient method to modify the fatty acid composition of oils, enhance the frying qualities and lower the degradation rate.

    RESULTS: This study blended 5% and 10% palm stearin into palm oil to investigate the deep-frying performance and impact on food quality. Increasing the palm stearin content improved the frying oil's oxidative and hydrolytic stability, evidenced by reduction of total polar material, free fatty acid and total oxidation value. Addition of palm stearin increased the slip melting point which improved the oil's oxidative stability but no significant increase in oil content of instant noodles was observed. Scanning electron microscopy and fluorescence microscopy showed the formation of larger pores in the noodle structure that facilitated oil retention.

    CONCLUSION: Blending palm stearin into frying oil enhanced the frying stability and minimally affected the oil uptake in instant noodles. This article presents the viability of blending palm stearin into frying oils to develop longer-lasting frying oils. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  16. Banu M, Krishnamurthy KS, Srinivasan V, Kandiannan K, Surendran U
    J Sci Food Agric, 2024 May;104(7):4176-4188.
    PMID: 38385763 DOI: 10.1002/jsfa.13299
    BACKGROUND: Turmeric cultivation primarily thrives in India, followed by Bangladesh, Cambodia, Thailand, China, Malaysia, Indonesia and the Philippines. India leads globally in both area and production of turmeric. Despite this, there is a recognized gap in research regarding the impact of climate change on site suitability of turmeric. The primary objective of the present study was to evaluate both the present and future suitability of turmeric cultivation within the humid tropical region of Kerala, India, by employing advanced geospatial techniques. The research utilized meteorological data from the Indian Meteorological Department for the period of 1986-2020 as historical data and projected future data from the Coupled Model Intercomparison Project Phase 6 (CMIP6). Four climatic scenarios of shared socioeconomic pathway (SSP) from the Intergovernmental Panel on Climate Change AR6 model of MIROC6 for the year 2050 (SSP 1-2.6, SSP 2-4.5, SSP 3-7.0 and SSP 5-8.5) were used.

    RESULTS: The results showed that suitable area for turmeric cultivation is declining in future scenario and this decline can be primarily attributed to fluctuations in temperature and an anticipated increase in rainfall in the year 2050. Notable changes in the spatial distribution of suitable areas over time were observed through the application of geographic information system (GIS) techniques. Importantly, as per the suitability criteria provided by ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS & LUP), all the districts in Kerala exhibited moderately suitable conditions for turmeric cultivation. With the GIS tools, the study identified highly suitable, moderately suitable, marginally suitable and not suitable areas of turmeric cultivation in Kerala. Presently 28% of area falls under highly suitable, 41% of area falls under moderately suitable and 11% falls under not suitable for turmeric cultivation. However, considering the projected scenarios for 2050 under the SSP framework, there will be a significant decrease in highly suitable area by 19% under SSP 5-8.5. This reduction in area will have an impact on the productivity of the crop as a result of changes in temperature and rainfall patterns.

    CONCLUSION: The outcome of the present research suggests that the state of Kerala needs to implement suitable climate change adaptation and management strategies for sustaining the turmeric cultivation. Additionally, the present study includes a discussion on potential management strategies to address the challenges posed by changing climatic conditions for optimizing turmeric production in the region. © 2024 Society of Chemical Industry.

  17. Xie C, Gao W, Liang X, Chye FY
    J Sci Food Agric, 2024 May 14.
    PMID: 38742546 DOI: 10.1002/jsfa.13567
    BACKGROUND: Garlic polysaccharides (GPs) constitute over 75% of the dry weight of garlic. They are characterized by fructan with a 2,1-β-d-Fruf backbone and 2,6-β-d-Fruf branches. Studies have suggested a role for GPs in regulating gut microbiota but whether they possess a comprehensive function in maintaining intestinal well-being and can serve as effective prebiotics remains unknown. To explore this, varied doses of GPs (1.25-5.0 g kg-1 body weight) and inulin (as a positive control) were administered to Kunming mice via gavage, and their effects on the intestinal epithelial, chemical, and biological barriers were assessed. A constipation model was also established using loperamide to investigate the potential effects of GPs on the relief of constipation.

    RESULTS: Administration of GPs significantly upregulated expression of tight-junction proteins and mucins in Kunming mouse small-intestine tissue. Garlic polysaccharides elevated cecal butyric acid content, reduced the abundance of Desulfobacterota, and decreased the ratio of Firmicutes to Bacteroidetes (the F/B ratio). Garlic polysaccharides also promoted the growth of Bacteroides acidifaciens and Clostridium saccharogumia. Tax4Fun functional predictions suggested the potential of GPs to prevent human diseases, reducing the risk of insulin resistance, infectious diseases, and drug resistance. Garlic polysaccharides also exhibited a beneficial effect in alleviating loperamide-induced constipation symptoms by enhancing small intestinal transit, softening stool consistency, accelerating bowel movements, and promoting the release of excitatory neurotransmitters.

    CONCLUSIONS: These findings highlight the important role of GPs in maintaining gut fitness by enhancing intestinal barrier function and peristalsis. Garlic polysaccharides are promising prebiotics, potentially contributing to overall intestinal well-being and health. © 2024 Society of Chemical Industry.

  18. Yan R, Zeng X, Shen J, Wu Z, Guo Y, Du Q, et al.
    J Sci Food Agric, 2024 Aug 30;104(11):6376-6387.
    PMID: 38450745 DOI: 10.1002/jsfa.13444
    Strain activity and stability severely limit the beneficial effects of probiotics in modulating host health. Postbiotics have emerged as a promising alternative as they can provide similar or even enhanced efficacy to probiotics, even under inactivated conditions. This review introduces the ingredients, preparation, and identification techniques of postbiotics, focusing on the comparison of the advantages and limitations between probiotics and postbiotics based on their mechanisms and applications. Inactivation treatment is the most significant difference between postbiotics and probiotics. We highlight the use of emerging technologies to inactivate probiotics, optimize process conditions to maintain the activity of postbiotics, or scale up their production. Postbiotics have high stability which can overcome unfavorable factors, such as easy inactivation and difficult colonization of probiotics after entering the intestine, and are rapidly activated, allowing continuous and rapid optimization of the intestinal microecological environment. They provide unique mechanisms, and multiple targets act on the gut-organ axis, co-providing new clues for the study of the biological functions of postbiotics. We summarize the mechanisms of action of inactivated lactic acid bacteria, highlighting that the NF-κB and MAPK pathways can be used as immune targeting pathways for postbiotic modulation of host health. Generally, we believe that as the classification, composition, and efficacy mechanism of postbiotics become clearer they will be more widely used in food, medicine, and other fields, greatly enriching the dimensions of food innovation. © 2024 Society of Chemical Industry.
  19. Nayan N, van Erven G, Kabel MA, Sonnenberg AS, Hendriks WH, Cone JW
    J Sci Food Agric, 2019 Jun;99(8):4054-4062.
    PMID: 30737799 DOI: 10.1002/jsfa.9634
    BACKGROUND: White rot fungi have been used to improve the nutritive value of lignocellulose for ruminants. In feed analysis, the Van Soest method is widely used to determine the cell wall contents. To assess the reliability of this method (Method A) for determination of cell wall contents in fungal-treated wheat straw, we compared a combined monosaccharide analysis and pyrolysis coupled to gas chromatography with mass spectrometry (Py-GC/MS) (Method B). Ruminal digestibility, measured as in vitro gas production (IVGP), was subsequently used to examine which method explains best the effect of fungal pretreatment on the digestibility of wheat straw.

    RESULTS: Both methods differed considerably in the mass recoveries of the individual cell wall components, which changed on how we assess their degradation characteristics. For example, Method B gave a higher degradation of lignin (61.9%), as compared to Method A (33.2%). Method A, however, showed a better correlation of IVGP with the ratio of lignin to total structural carbohydrates, as compared to Method B (Pearson's r of -0.84 versus -0.69). Nevertheless, Method B provides a more accurate quantification of lignin, reflecting its actual modification and degradation. With the information on the lignin structural features, Method B presents a substantial advantage in understanding the underlying mechanisms of lignin breakdown. Both methods, however, could not accurately quantify the cellulose contents - among others, due to interference of fungal biomass.

    CONCLUSION: Method A only accounts for the recalcitrant residue and therefore is more suitable for evaluating ruminal digestibility. Method B allows a more accurate quantification of cell wall, required to understand and better explains the actual modification of the cell wall. The suitability of both methods, therefore, depends on their intended purposes. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  20. Soo YT, Ng SW, Tang TK, Ab Karim NA, Phuah ET, Lee YY
    J Sci Food Agric, 2021 Aug 15;101(10):4161-4172.
    PMID: 33428211 DOI: 10.1002/jsfa.11054
    BACKGROUND: Palm pressed fibre (PPF) is a cellulose-rich biomass residue produced during palm oil extraction. Its high cellulose content allows the isolation of cellulose nanocrystal (CNC). CNC has attracted scientific interest due to its biodegradability, biocompatibility and low cost. The present study isolated CNC from PPF using a cation exchange resin, which is an environmentally friendly and less harsh hydrolysis method than conventional mineral acid hydrolysis. Isolated CNC was used to stabilise an oil-in-water emulsion and the emulsion stability was evaluated in terms of droplet size, morphology and physical stability.

    RESULTS: PPF was subjected to alkali and bleach treatment prior to hydrolysis, which successfully removed 54% and 75% of non-cellulosic components (hemicellulose and lignin, respectively). Hydrolysis conditions of 5 h, 15:1 (w/w) resin-to-pulp ratio and 50 °C produced CNC particles of 50-100 nm in length. CNC had a crystallinity index of 42% and appeared rod-like morphologically. CNC-stabilised emulsion had better stability when used in combination with soy lecithin (SL), a well-established, commonly used food stabiliser. Emulsion stabilised by the binary mixture of CNC and SL had droplet size, morphology and physical stability comparable to those of emulsion stabilised using SL.

    CONCLUSIONS: CNC was successfully isolated from PPF through a cation exchange resin. This offers an alternative usage for the underutilised PPF to be converted into value-added products. Isolated CNC was also found to have promising potential in the stabilisation of Pickering emulsions. These results provide useful information indicating CNC as a natural and sustainable stabiliser for food, cosmeceutical and pharmaceutical applications. © 2021 Society of Chemical Industry.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links