Displaying publications 101 - 120 of 129 in total

Abstract:
Sort:
  1. Lai JW, Maah MJ, Tan KW, Sarip R, Lim YAL, Ganguly R, et al.
    Malar J, 2022 Dec 17;21(1):386.
    PMID: 36528584 DOI: 10.1186/s12936-022-04406-0
    BACKGROUND: Malaria remains one of the most virulent and deadliest parasitic disease in the world, particularly in Africa and Southeast Asia. Widespread occurrence of artemisinin-resistant Plasmodium falciparum strains from the Greater Mekong Subregion is alarming. This hinders the national economies, as well as being a major drawback in the effective control and elimination of malaria worldwide. Clearly, an effective anti-malarial drug is urgently needed.

    METHODS: The dinuclear and mononuclear copper(II) and zinc(II) complexes were synthesized in ethanolic solution and characterized by various physical measurements (FTIR, CHN elemental analysis, solubility, ESI-MS, UV-Visible, conductivity and magnetic moment, and NMR). X-ray crystal structure of the dicopper(II) complex was determined. The in vitro haemolytic activities of these metal complexes were evaluated spectroscopically on B+ blood while the anti-malarial potency was performed in vitro on blood stage drug-sensitive Plasmodium falciparum 3D7 (Pf3D7) and artemisinin-resistant Plasmodium falciparum IPC5202 (Pf5202) with fluorescence dye. Mode of action of metal complexes were conducted to determine the formation of reactive oxygen species using PNDA and DCFH-DA dyes, JC-1 depolarization of mitochondrial membrane potential, malarial 20S proteasome inhibition with parasite lysate, and morphological studies using Giemsa and Hoechst stains.

    RESULTS: Copper(II) complexes showed anti-malarial potency against both Pf3D7 and Pf5202 in sub-micromolar to micromolar range. The zinc(II) complexes were effective against Pf3D7 with excellent therapeutic index but encountered total resistance against Pf5202. Among the four, the dinuclear copper(II) complex was the most potent against both strains. The zinc(II) complexes caused no haemolysis of RBC while copper(II) complexes induced increased haemolysis with increasing concentration. Further mechanistic studies of both copper(II) complexes on both Pf3D7 and Pf5202 strains showed induction of ROS, 20S malarial proteasome inhibition, loss of mitochondrial membrane potential and morphological features indicative of apoptosis.

    CONCLUSION: The dinuclear [Cu(phen)-4,4'-bipy-Cu(phen)](NO3)4 is highly potent and can overcome the total drug-resistance of Pf5202 towards chloroquine and artemisinin. The other three copper(II) and zinc(II) complexes were only effective towards the drug-sensitive Pf3D7, with the latter causing no haemolysis of RBC. Their mode of action involves multiple targets.

  2. Yon JLT, Htet NH, Naing C, Tung WS, Aung HH, Mak JW
    Malar J, 2022 Dec 22;21(1):391.
    PMID: 36550507 DOI: 10.1186/s12936-022-04419-9
    BACKGROUND: Due to relatively low malaria parasitaemia in pregnancy, an appropriate field test that can adequately detect infections in pregnant women presenting with illness or for malaria screening during antenatal care is crucially important. The objective was to evaluate the diagnostic accuracy of loop-mediated isothermal amplification (LAMP) for the detection of uncomplicated malaria in pregnancy.

    METHODS: This was a meta-analysis of diagnostic accuracy. Relevant studies that assessed the diagnostic performance of LAMP for the detection of malaria in pregnancy were searched in health-related electronic databases including PubMed, Ovid, and Google Scholar. The methodological quality of the studies included was evaluated using the QUADAS-2 tool.

    RESULTS: Of the 372 studies identified, eight studies involving 2999 pregnant women in five endemic countries that assessed the accuracy of LAMP were identified. With three types of PCR as reference tests, the pooled sensitivity of LAMP was 91% (95%CI 67-98%) and pooled specificity was 99% (95%CI 83-100%, 4 studies), and the negative likelihood ratio was 9% (2-40%). Caution is needed in the interpretation as there was substantial between-study heterogeneity (I2: 80%), and a low probability that a person without infection is tested negative. With microscopy as a reference, the pooled sensitivity of LAMP was 95% (95%CI 26-100%) and pooled specificity was 100% (95%CI 94-100%, 4 studies). There was a wide range of sensitivity and substantial between-study heterogeneity (I2: 83.5-98.4%). To investigate the source of heterogeneity, a meta-regression analysis was performed with covariates. Of these potential confounding factors, reference test (p: 0.03) and study design (p:0.03) had affected the diagnostic accuracy of LAMP in malaria in pregnancy. Overall, there was a low certainty of the evidence in accuracy estimates.

    CONCLUSION: The findings suggest that LAMP is more sensitive than traditional tests used at facilities, but the utility of detecting and treating these low-density infections is not well understood. Due to the limited number of studies with bias in their methodological quality, variation in the study design, and different types of reference tests further research is likely to change the estimate. Well-conceived large prospective studies with blinding of the index test results are recommenced.

  3. Thriemer K, Ley B, Bobogare A, Dysoley L, Alam MS, Pasaribu AP, et al.
    Malar J, 2017 04 05;16(1):141.
    PMID: 28381261 DOI: 10.1186/s12936-017-1784-1
    The delivery of safe and effective radical cure for Plasmodium vivax is one of the greatest challenges for achieving malaria elimination from the Asia-Pacific by 2030. During the annual meeting of the Asia Pacific Malaria Elimination Network Vivax Working Group in October 2016, a round table discussion was held to discuss the programmatic issues hindering the widespread use of primaquine (PQ) radical cure. Participants included 73 representatives from 16 partner countries and 33 institutional partners and other research institutes. In this meeting report, the key discussion points are presented and grouped into five themes: (i) current barriers for glucose-6-phosphate deficiency (G6PD) testing prior to PQ radical cure, (ii) necessary properties of G6PD tests for wide scale deployment, (iii) the promotion of G6PD testing, (iv) improving adherence to PQ regimens and (v) the challenges for future tafenoquine (TQ) roll out. Robust point of care (PoC) G6PD tests are needed, which are suitable and cost-effective for clinical settings with limited infrastructure. An affordable and competitive test price is needed, accompanied by sustainable funding for the product with appropriate training of healthcare staff, and robust quality control and assurance processes. In the absence of quantitative PoC G6PD tests, G6PD status can be gauged with qualitative diagnostics, however none of the available tests is currently sensitive enough to guide TQ treatment. TQ introduction will require overcoming additional challenges including the management of severely and intermediately G6PD deficient individuals. Robust strategies are needed to ensure that effective treatment practices can be deployed widely, and these should ensure that the caveats are outweighed by  the benefits of radical cure for both the patients and the community. Widespread access to quality controlled G6PD testing will be critical.
  4. Ley B, Thriemer K, Jaswal J, Poirot E, Alam MS, Phru CS, et al.
    Malar J, 2017 08 10;16(1):329.
    PMID: 28797255 DOI: 10.1186/s12936-017-1981-y
    BACKGROUND: Primaquine is essential for the radical cure of vivax malaria, however its broad application is hindered by the risk of drug-induced haemolysis in individuals with glucose-6-phosphate-dehydrogenase (G6PD) deficiency. Rapid diagnostic tests capable of diagnosing G6PD deficiency are now available, but these are not used widely.

    METHODS: A series of qualitative interviews were conducted with policy makers and healthcare providers in four vivax-endemic countries. Routine G6PD testing is not part of current policy in Bangladesh, Cambodia or China, but it is in Malaysia. The interviews were analysed with regard to respondents perceptions of vivax malaria, -primaquine based treatment for malaria and the complexities of G6PD deficiency.

    RESULTS: Three barriers to the roll-out of routine G6PD testing were identified in all sites: (a) a perceived low risk of drug-induced haemolysis; (b) the perception that vivax malaria was benign and accordingly treatment with primaquine was not regarded as a priority; and, (c) the additional costs of introducing routine testing. In Malaysia, respondents considered the current test and treat algorithm suitable and the need for an alternative approach was only considered relevant in highly mobile and hard to reach populations.

    CONCLUSIONS: Greater efforts are needed to increase awareness of the benefits of the radical cure of Plasmodium vivax and this should be supported by economic analyses exploring the cost effectiveness of routine G6PD testing.

  5. Thriemer K, Bobogare A, Ley B, Gudo CS, Alam MS, Anstey NM, et al.
    Malar J, 2018 Jun 20;17(1):241.
    PMID: 29925430 DOI: 10.1186/s12936-018-2380-8
    The goal to eliminate malaria from the Asia-Pacific by 2030 will require the safe and widespread delivery of effective radical cure of malaria. In October 2017, the Asia Pacific Malaria Elimination Network Vivax Working Group met to discuss the impediments to primaquine (PQ) radical cure, how these can be overcome and the methodological difficulties in assessing clinical effectiveness of radical cure. The salient discussions of this meeting which involved 110 representatives from 18 partner countries and 21 institutional partner organizations are reported. Context specific strategies to improve adherence are needed to increase understanding and awareness of PQ within affected communities; these must include education and health promotion programs. Lessons learned from other disease programs highlight that a package of approaches has the greatest potential to change patient and prescriber habits, however optimizing the components of this approach and quantifying their effectiveness is challenging. In a trial setting, the reactivity of participants results in patients altering their behaviour and creates inherent bias. Although bias can be reduced by integrating data collection into the routine health care and surveillance systems, this comes at a cost of decreasing the detection of clinical outcomes. Measuring adherence and the factors that relate to it, also requires an in-depth understanding of the context and the underlying sociocultural logic that supports it. Reaching the elimination goal will require innovative approaches to improve radical cure for vivax malaria, as well as the methods to evaluate its effectiveness.
  6. Naserrudin NA, Hassan MR, Jeffree MS, Culleton R, Hod R, Ahmed K
    Malar J, 2022 Dec 06;21(1):373.
    PMID: 36474243 DOI: 10.1186/s12936-022-04339-8
    BACKGROUND: In the last decade Plasmodium knowlesi has been detected in humans throughout South East Asia. The highest risk groups for this infection are males, adults and those performing forest-related work. Furthermore, asymptomatic cases of P. knowlesi malaria have been reported including among women and children.

    METHODS: Pubmed, Scopus and the Web of Science databases for literature describing asymptomatic P. knowlesi malaria published between 2010 and 2020 were searched. A systematic literature review was conducted to identify studies reporting the prevalence and incidence of laboratory confirmed asymptomatic P. knowlesi cases in humans, their clinical and demographic characteristics, and methods used to diagnose these cases.

    RESULTS: By analysing over 102 papers, thirteen were eligible for this review. Asymptomatic P. knowlesi infections have been detected in 0.03%-4.0% of the population depending on region, and infections have been described in children as young as 2 years old. Various different diagnostic methods were used to detect P. knowlesi cases and there were differing definitions of asymptomatic cases in these studies. The literature indicates that regionally-differing immune-related mechanisms may play a part on the prevalence of asymptomatic P. knowlesi.

    CONCLUSION: Differing epidemiological characteristics of asymptomatic P. knowlesi malaria in different regions reinforces the need to further investigate disease transmission mechanics. Effective public health responses to changes in P. knowlesi epidemiology require proactive intervention and multisectoral collaboration.

  7. Grigg MJ, William T, Piera KA, Rajahram GS, Jelip J, Aziz A, et al.
    Malar J, 2018 Dec 10;17(1):463.
    PMID: 30526613 DOI: 10.1186/s12936-018-2593-x
    BACKGROUND: Spreading Plasmodium falciparum artemisinin drug resistance threatens global malaria public health gains. Limited data exist to define the extent of P. falciparum artemisinin resistance southeast of the Greater Mekong region in Malaysia.

    METHODS: A clinical efficacy study of oral artesunate (total target dose 12 mg/kg) daily for 3 days was conducted in patients with uncomplicated falciparum malaria and a parasite count 

  8. Jiram AI, Ooi CH, Rubio JM, Hisam S, Karnan G, Sukor NM, et al.
    Malar J, 2019 May 02;18(1):156.
    PMID: 31046769 DOI: 10.1186/s12936-019-2786-y
    BACKGROUND: Malaysia has declared its aim to eliminate malaria with a goal of achieving zero local transmission by the year 2020. However, targeting the human reservoir of infection, including those with asymptomatic infection is required to achieve malaria elimination. Diagnosing asymptomatic malaria is not as straightforward due to the obvious lack of clinical manifestations and often subpatent level of parasites. Accurate diagnosis of malaria is important for providing realistic estimates of malaria burden and preventing misinformed interventions. Low levels of parasitaemia acts as silent reservoir of transmission thus remains infectious to susceptible mosquito vectors. Hence, the aim of this study is to investigate the prevalence of asymptomatic submicroscopic malaria (SMM) in the District of Belaga, Sarawak.

    METHODS: In 2013, a total of 1744 dried blood spots (DBS) were obtained from residents of 8 longhouses who appeared healthy. Subsequently, 251 venous blood samples were collected from residents of 2 localities in 2014 based on the highest number of submicroscopic cases from prior findings. Thin and thick blood films were prepared from blood obtained from all participants in this study. Microscopic examination were carried out on all samples and a nested and nested multiplex PCR were performed on samples collected in 2013 and 2014 respectively.

    RESULTS: No malaria parasites were detected in all the Giemsa-stained blood films. However, of the 1744 samples, 29 (1.7%) were positive for Plasmodium vivax by PCR. Additionally, of the 251 samples, the most prevalent mono-infection detected by PCR was Plasmodium falciparum 50 (20%), followed by P. vivax 39 (16%), P. knowlesi 9 (4%), and mixed infections 20 (8%).

    CONCLUSIONS: This research findings conclude evidence of Plasmodium by PCR, among samples previously undetectable by routine blood film microscopic examination, in local ethnic minority who are clinically healthy. SMM in Belaga district is attributed not only to P. vivax, but also to P. falciparum and P. knowlesi. In complementing efforts of programme managers, there is a need to increase surveillance for SMM nationwide to estimate the degree of SMM that warrant measures to block new transmission of malaria.

  9. Naserrudin NA, Lin PYP, Monroe A, Baumann SE, Adhikari B, Miller AC, et al.
    Malar J, 2023 Nov 09;22(1):343.
    PMID: 37946259 DOI: 10.1186/s12936-023-04750-9
    BACKGROUND: The increasing incidence of Plasmodium knowlesi malaria poses a significant challenge to efforts to eliminate malaria from Malaysia. Macaque reservoirs, outdoors-biting mosquitoes, human activities, and agricultural work are key factors associated with the transmission of this zoonotic pathogen. However, gaps in knowledge regarding reasons that drive malaria persistence in rural Kudat, Sabah, Northern Borneo remain. This study was conducted to address this knowledge gap, to better understand the complexities of these entangled problems, and to initiate discussion regarding new countermeasures to address them. This study aims to highlight rural community members' perspectives regarding inequities to health relating to P. knowlesi malaria exposure.

    METHODS: From January to October 2022, a study using qualitative methods was conducted in four rural villages in Kudat district of Sabah, Malaysia. A total of nine in-depth interviews were conducted with community and faith leaders, after the completion of twelve focus group discussions with 26 photovoice participants. The interviews were conducted using the Sabah Malay dialect, audio-recorded, transcribed, and translated into English. The research team led the discussion and analysis, which was approved by participants through member checking at the community level.

    RESULTS: Participants identified disparity in health as a key issue affecting their health and livelihoods. Injustice in the social environment was also identified as a significant challenge, including the importance of listening to the voices of affected communities in disentangling the social and economic phenomena that can impact malaria control. Specific concerns included inadequate access to health-related resources and degradation of the environment. Participants recommended improving access to water and other necessities, increasing the availability of malaria control commodities in healthcare facilities, and developing sustainable programs to reduce socioeconomic disparities.

    CONCLUSION: Inequities to health emerged as a key concern for malaria control in rural Kudat, Sabah. A locally targeted malaria programme cantered on improving the social and economic disparities associated with health outcomes, could be a potential strategy for malaria prevention in such areas. Community-level perspectives gathered from this study can be used as a foundation for future discussions and dialogues among policymakers and community members for achieving greater transparency, improving social equity, and interoperability in addressing P. knowlesi malaria control.

  10. Naserrudin NA, Jiee SF, Habil B, Jantim A, Mohamed AFB, Dony JJF, et al.
    Malar J, 2023 Oct 03;22(1):292.
    PMID: 37789320 DOI: 10.1186/s12936-023-04693-1
    BACKGROUND: Since 2018, no indigenous human malaria cases has been reported in Malaysia. However, during the recent COVID-19 pandemic the World Health Organization is concerned that the pandemic might erode the success of malaria control as there are reports of increase malaria cases in resource limited countries. Little is known how the COVID-19 pandemic has impacted malaria in middle-income countries like Malaysia. Here the public health response to a Plasmodium malariae outbreak occurred in a village in Sabah state, Malaysia, during a COVID-19 movement control order is reported.

    METHODS: An outbreak was declared following the detection of P. malariae in July 2020 and active case detection for malaria was performed by collecting blood samples from residents residing within 2 km radius of Moyog village. Vector prevalence and the efficacy of residual insecticides were determined. Health awareness programmes were implemented to prevent future outbreaks. A survey was conducted among villagers to understand risk behaviour and beliefs concerning malaria.

    RESULTS: A total of 5254 blood samples collected from 19 villages. Among them, 19 P. malariae cases were identified, including the index case, which originated from a man who returned from Indonesia. His return from Indonesia and healthcare facilities visit coincided with the movement control order during COVID-19 pandemic when the healthcare facilities stretched its capacity and only serious cases were given priority. Despite the index case being a returnee from a malaria endemic area presenting with mild fever, no malaria test was performed at local healthcare facilities. All cases were symptomatic and uncomplicated except for a pregnant woman with severe malaria. There were no deaths; all patients recovered following treatment with artemether-lumefantrine combination therapy. Anopheles balabacensis and Anopheles barbirostris were detected in ponds, puddles and riverbeds. The survey revealed that fishing and hunting during night, and self-treatment for mild symptoms contributed to the outbreak. Despite the index case being a returnee from a malaria-endemic area presenting with mild fever, no malaria test was performed at local healthcare facilities.

    CONCLUSION: The outbreak occurred during a COVID-19 movement control order, which strained healthcare facilities, prioritizing only serious cases. Healthcare workers need to be more aware of the risk of malaria from individuals who return from malaria endemic areas. To achieve malaria elimination and prevention of disease reintroduction, new strategies that include multisectoral agencies and active community participation are essential for a more sustainable malaria control programme.

  11. Abdul Rahim FA, Md Yatim MF, Abdul Mutalip MH, Mahmud MAF
    Malar J, 2023 Sep 12;22(1):267.
    PMID: 37700307 DOI: 10.1186/s12936-023-04704-1
    BACKGROUND: Malaria remains a public health problem in Malaysia despite a decline in the number of cases in recent years. Public knowledge of malaria is essential to achieving and maintaining malaria elimination. Therefore, this survey assessed the prevalence of people who had ever heard of malaria, had correct knowledge of malaria transmission, symptoms, risk activities, and prevention measures in the Malaysian population, and identified the associated factors involved.

    METHODS: The data were obtained from the National Health and Morbidity Survey (NHMS) which was conducted from September to October 2020. A cross-sectional survey with five structured questionnaires using the method of computer-assisted telephone interviews (CATI) was used to collect data. The socio-demographic characteristics such as age, gender, ethnicity, nationality, marital status, educational level, and occupation were recorded. Data were analysed using STATA SE Version 16. Associations between variables were tested using chi-square and logistic regression, with the level of statistical significance set at p 

  12. Naserrudin NA, Yong PPL, Monroe A, Culleton R, Baumann SE, Sato S, et al.
    Malar J, 2023 May 26;22(1):166.
    PMID: 37237418 DOI: 10.1186/s12936-023-04603-5
    BACKGROUND: Many rural communities in Malaysian Borneo and Southeast Asia are at risk of Plasmodium knowlesi malaria. Multiple factors contribute to infection, however, a deep understanding of illness causation and prevention practices among at-risk communities remains limited. This study aims to document local knowledge on malaria causation and preventive practices of rural communities in Sabah, Malaysia, using photovoice-a participatory research method.

    METHODS: From January to June 2022, a photovoice study was conducted with rural communities in Matunggong subdistrict, Malaysia, to explore their experiences with and local knowledge of non-human primate malaria and prevention practices. The study included (1) an introductory phase in which participants were introduced to the photovoice method; (2) a documentation phase in which participants captured and narrated photos from their communities; (3) a discussion phase in which participants discussed photos and relevant topics through a series of three focus group discussions (FGDs) per village; and (4) a dissemination phase where selected photos were shared with key stakeholders through a photo exhibition. A purposively selected sample of 26 participants (adults > 18 years old, male, and female) from four villages participated in all phases of the study. The study activities were conducted in Sabah Malay dialect. Participants and the research team contributed to data review and analyses.

    RESULTS: Rural communities in Sabah, Malaysia possess local knowledge that attributes non-human primate malaria to natural factors related to the presence of mosquitoes that bite humans and which carry "kuman-malaria" or malaria parasite. Participants revealed various preventive practises ranging from traditional practises, including burning dried leaves and using plants that produce foul odours, to non-traditional approaches such as aerosols and mosquito repellents. By engaging with researchers and policymakers, the participants or termed as co-researchers in this study, showcased their ability to learn and appreciate new knowledge and perspectives and valued the opportunity to share their voices with policymakers. The study successfully fostered a balance of power dynamics between the co-researchers, research team members and policymakers.

    CONCLUSION: There were no misconceptions about malaria causation among study participants. The insights from study participants are relevant because of their living experience with the non-human malaria. It is critical to incorporate rural community perspectives in designing locally effective and feasible malaria interventions in rural Sabah, Malaysia. Future research can consider adapting the photovoice methodology for further research with the community toward building locally tailored-malaria strategies.

  13. Bello RO, Abdullah MA, Abd Majid R, Chin VK, Abd Rachman Isnadi MF, Ibraheem ZO, et al.
    Malar J, 2019 Dec 19;18(1):434.
    PMID: 31856836 DOI: 10.1186/s12936-019-3070-x
    BACKGROUND: The immune modulating potential of IL-35 in multiple human disorders has been reported. Consequent upon the recognition of inflammatory cytokine activation and its preponderance for mediating pathology during malaria infection, the study aimed to characterize the expression and functional contribution(s) of IL-35 in Plasmodium berghei (strain ANKA) infected mice.

    METHODS: Plasmodium berghei infection in male ICR mice was used as the rodent model of choice. The time course of IL-35 expression in the systemic circulation and tissues of P. berghei infected mice as well as their healthy control counterparts was assessed by enzyme linked immunosorbent assay and immunohistochemistry respectively. The effect of modulating IL-35 by recombinant IL-35 protein or neutralizing anti-Epstein-Barr virus-induced gene 3 antibody on the cytokine environment during P. berghei infection was assessed by flow cytometry. Furthermore, the influence of modulating IL-35 on histopathological hallmarks of malaria and disease progression was evaluated.

    RESULTS: Interleukin-35 was significantly up regulated in serum and tissues of P. berghei infected mice and correlated with parasitaemia. Neutralization of IL-35 significantly enhanced the release of IFN-γ, decreased the expression of IL-6 and decreased parasitaemia patency. Neutralization of IL-35 was also associated with a tendency towards increased survival as well as the absence of pathological features associated with malaria infection unlike recombinant IL-35 protein administration which sustained a normal course of infection and unfavourable malaria associated histological outcomes in P. berghei infected mice.

    CONCLUSION: These results indicate the involvement of IL-35 in P. berghei induced malaria infection. IL-35 neutralization strategies may represent viable therapeutic modalities beneficial for the resolution of malaria infection.

  14. Mahendran P, Liew JWK, Amir A, Ching XT, Lau YL
    Malar J, 2020 Jul 10;19(1):241.
    PMID: 32650774 DOI: 10.1186/s12936-020-03314-5
    BACKGROUND: Plasmodium knowlesi and Plasmodium vivax are the predominant Plasmodium species that cause malaria in Malaysia and play a role in asymptomatic malaria disease transmission in Malaysia. The diagnostic tools available to diagnose malaria, such as microscopy and rapid diagnostic test (RDT), are less sensitive at detecting lower parasite density. Droplet digital polymerase chain reaction (ddPCR), which has been shown to have higher sensitivity at diagnosing malaria, allows direct quantification without the need for a standard curve. The aim of this study is to develop and use a duplex ddPCR assay for the detection of P. knowlesi and P. vivax, and compare this method to nested PCR and qPCR.

    METHODS: The concordance rate, sensitivity and specificity of the duplex ddPCR assay were determined and compared to nested PCR and duplex qPCR.

    RESULTS: The duplex ddPCR assay had higher analytical sensitivity (P. vivax = 10 copies/µL and P. knowlesi = 0.01 copies/µL) compared to qPCR (P. vivax = 100 copies/µL and P. knowlesi = 10 copies/µL). Moreover, the ddPCR assay had acceptable clinical sensitivity (P. vivax = 80% and P. knowlesi = 90%) and clinical specificity (P. vivax = 87.84% and P. knowlesi = 81.08%) when compared to nested PCR. Both ddPCR and qPCR detected more double infections in the samples.

    CONCLUSIONS: Overall, the ddPCR assay demonstrated acceptable efficiency in detection of P. knowlesi and P. vivax, and was more sensitive than nested PCR in detecting mixed infections. However, the duplex ddPCR assay still needs optimization to improve the assay's clinical sensitivity and specificity.

  15. Lee WC, Cheong FW, Amir A, Lai MY, Tan JH, Phang WK, et al.
    Malar J, 2023 Oct 19;22(1):316.
    PMID: 37858164 DOI: 10.1186/s12936-023-04732-x
  16. T Thurai Rathnam J, Grigg MJ, Dini S, William T, Sakam SS, Cooper DJ, et al.
    Malar J, 2023 Feb 14;22(1):54.
    PMID: 36782162 DOI: 10.1186/s12936-023-04483-9
    BACKGROUND: The incidence of zoonotic Plasmodium knowlesi infections in humans is rising in Southeast Asia, leading to clinical studies to monitor the efficacy of anti-malarial treatments for knowlesi malaria. One of the key outcomes of anti-malarial drug efficacy is parasite clearance. For Plasmodium falciparum, parasite clearance is typically estimated using a two-stage method, that involves estimating parasite clearance for individual patients followed by pooling of individual estimates to derive population estimates. An alternative approach is Bayesian hierarchical modelling which simultaneously analyses all parasite-time patient profiles to determine parasite clearance. This study compared these methods for estimating parasite clearance in P. knowlesi treatment efficacy studies, with typically fewer parasite measurements per patient due to high susceptibility to anti-malarials.

    METHODS: Using parasite clearance data from 714 patients with knowlesi malaria and enrolled in three trials, the Worldwide Antimalarial Resistance Network (WWARN) Parasite Clearance Estimator (PCE) standard two-stage approach and Bayesian hierarchical modelling were compared. Both methods estimate the parasite clearance rate from a model that incorporates a lag phase, slope, and tail phase for the parasitaemia profiles.

    RESULTS: The standard two-stage approach successfully estimated the parasite clearance rate for 678 patients, with 36 (5%) patients excluded due to an insufficient number of available parasitaemia measurements. The Bayesian hierarchical estimation method was applied to the parasitaemia data of all 714 patients. Overall, the Bayesian method estimated a faster population mean parasite clearance (0.36/h, 95% credible interval [0.18, 0.65]) compared to the standard two-stage method (0.26/h, 95% confidence interval [0.11, 0.46]), with better model fits (compared visually). Artemisinin-based combination therapy (ACT) is more effective in treating P. knowlesi than chloroquine, as confirmed by both methods, with a mean estimated parasite clearance half-life of 2.5 and 3.6 h, respectively using the standard two-stage method, and 1.8 and 2.9 h using the Bayesian method.

    CONCLUSION: For clinical studies of P. knowlesi with frequent parasite measurements, the standard two-stage approach (WWARN's PCE) is recommended as this method is straightforward to implement. For studies with fewer parasite measurements per patient, the Bayesian approach should be considered. Regardless of method used, ACT is more efficacious than chloroquine, confirming the findings of the original trials.

  17. Lai MY, Ooi CH, Lau YL
    Malar J, 2021 Mar 25;20(1):166.
    PMID: 33766038 DOI: 10.1186/s12936-021-03707-0
    BACKGROUND: As an alternative to PCR methods, LAMP is increasingly being used in the field of molecular diagnostics. Under isothermal conditions at 65 °C, the entire procedure takes approximately 30 min to complete. In this study, we establish a sensitive and visualized LAMP method in a closed-tube system for the detection of Plasmodium knowlesi.

    METHODS: A total of 71 malaria microscopy positive blood samples collected in blood spots were obtained from the Sarawak State Health Department. Using 18s rRNA as the target gene, nested PCR and SYBR green I LAMP assay were performed following the DNA extraction. The colour changes of LAMP end products were observed by naked eyes.

    RESULTS: LAMP assay demonstrated a detection limit of 10 copies/µL in comparison with 100 copies/µL nested PCR. Of 71 P. knowlesi blood samples collected, LAMP detected 69 microscopy-positive samples. LAMP exhibited higher sensitivity than nested PCR assay. The SYBR green I LAMP assay was 97.1% sensitive (95% CI 90.2-99.7%) and 100% specific (95% CI 83.2-100%). Without opening the cap, incorporation of SYBR green I into the inner cap of the tube enabled the direct visualization of results upon completion of amplification. The positives instantaneously turned green while the negatives remained orange.

    CONCLUSIONS: These results indicate that SYBR green I LAMP assay is a convenient diagnosis tool for the detection of P. knowlesi in remote settings.

  18. Alvarez-Fernandez A, Bernal MJ, Fradejas I, Martin Ramírez A, Md Yusuf NA, Lanza M, et al.
    Malar J, 2021 Jan 06;20(1):16.
    PMID: 33407529 DOI: 10.1186/s12936-020-03544-7
    BACKGROUND: The emergence and spread of anti-malarial resistance continues to hinder malaria control. Plasmodium falciparum, the species that causes most human malaria cases and most deaths, has shown resistance to almost all known anti-malarials. This anti-malarial resistance arises from the development and subsequent expansion of Single Nucleotide Polymorphisms (SNPs) in specific parasite genes. A quick and cheap tool for the detection of drug resistance can be crucial and very useful for use in hospitals and in malaria control programmes. It has been demonstrated in different contexts that genotyping by Kompetitive Allele Specific PCR (KASP), is a simple, fast and economical method that allows a high-precision biallelic characterization of SNPs, hence its possible utility in the study of resistance in P. falciparum.

    METHODS: Three SNPs involved in most cases of resistance to the most widespread anti-malarial treatments have been analysed by PCR plus sequencing and by KASP (C580Y of the Kelch13 gene, Y86N of the Pfmdr1 gene and M133I of the Pfcytb gene). A total of 113 P. falciparum positive samples and 24 negative samples, previously analysed by PCR and sequencing, were selected for this assay. Likewise, the samples were genotyped for the MSP-1 and MSP-2 genes, and the Multiplicity of Infection (MOI) and parasitaemia were measured to observe their possible influence on the KASP method.

    RESULTS: The KASP results showed the same expected mutations and wild type genotypes as the reference method, with few exceptions that correlated with very low parasitaemia samples. In addition, two cases of heterozygotes that had not been detected by sequencing were found. No correlation was found between the MOI or parasitaemia and the KASP values of the sample. The reproducibility of the technique shows no oscillations between repetitions in any of the three SNPs analysed.

    CONCLUSIONS: The KASP assays developed in this study were efficient and versatile for the determination of the Plasmodium genotypes related to resistance. The method is simple, fast, reproducible with low cost in personnel, material and equipment and scalable, being able to core KASP arrays, including numerous SNPs, to complete the main pattern of mutations associated to P. falciparum resistance.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links