Displaying publications 101 - 120 of 136 in total

Abstract:
Sort:
  1. Serrato-Diaz LM, Goenaga R
    Plant Dis, 2021 Feb 25.
    PMID: 33630683 DOI: 10.1094/PDIS-10-20-2265-PDN
    Dragon fruit or pitahaya (Hylocereus spp.) is a tropical fruit belonging to the Cactaceae. It is native to Central and South America and commercially grown in the United States in southern California, south Florida and Puerto Rico. During a disease survey from April to June 2020, stem canker was observed in greenhouses and commercial orchards located in Mayaguez and San Sebastian, Puerto Rico with an incidence of 80%. Diseased cladodes (stems) of 1 mm2 tissue sections of 23 pitahaya varieties (NOI-13, NOI-14, NOI-16, N97-15, N97-17, N97-18, N97-20, N97-22, American Beauty, Cosmic Charlie, Halley's comet, Purple Haze, Alice, Bloody Mary, Dark Star, David Bowie, Delight, Makisupa, Red Jaina, Soul Kitchen, Vietnamese Jaina, Neitzel and Lisa) were disinfested with 70% ethanol, rinsed with double distilled water and plated on potato dextrose agar (PDA) amended with 60 mg/L streptomycin. Three isolates (17B-173-T3, 12C-118-T1 and 13B-131-T2) of Neoscytalidium dimidiatum (syn. N. hyalinum) were identified using taxonomic keys (Crous et al., 2006) and sequencing of the internal transcribed spacer (ITS) with primers ITS5 and ITS4 (White et al. 1990) and translation elongation factor 1 alpha (TEF1-α) with primers EF1-728F and EF1-986R (Carbone and Kohn, 1999). Sequences were compared using the BLASTn tool with N. dimidiatum deposited in NCBI GenBank. In PDA, colonies of N. dimidiatum were initially powdery white and turned grayish-black with age. Arthroconidia (n=50) were dark brown, disarticulating, truncate or cylindrical at the base, thick-walled with 0 to 1 septum, averaging 9.1 X 5.5um in length. GenBank accession numbers of N. dimidiatum DNA sequences were MT921260, MT921261 and MT921262 for ITS and MT920898, MT920899 and MT920900 for TEF1-α. Sequences were 99-100% identical with Ex-isotype CBS145.78 accession numbers KF531816 for ITS and KF531795 for TEF1-α. Pathogenicity tests were conducted on 12 healthy dragon fruit plants of 1.5 years old using three non-detached cladodes per plant. Cladodes were inoculated with 5mm mycelial plugs from 8-day-old pure cultures grown on PDA. Three healthy dragon fruit plants were used as controls and were inoculated with PDA plugs only. The experiment was repeated once. Twenty days after inoculations (DAI), isolates of N. dimidiatum caused stem canker on dragon fruit plants. For all isolates, sunken orange spots averaged 3 X 2 mm in length at 8 DAI. Necrotic blotches with chlorotic halos averaged 10 X 15 mm at 14 DAI; stem cankers with water-soaked tissue were observed at 20 DAI, and arthroconidia and black pycnidia on dry stem cankers at 30 DAI. Untreated controls had no symptoms of stem canker, and no fungi were isolated from tissue. Neoscytalidium dimidiatum has been reported to cause stem canker on Hylocereus spp. in China, Florida, Israel, Malaysia and Taiwan (Chuang et al. 2012; Lan et al., 2012; Ezra et al., 2013; Sanahuja et al., 2016). To our knowledge, this is the first report of N. dimidiatum causing stem canker on dragon fruit in Puerto Rico. References: 1. Carbone, I., and Kohn, L. 1999. Mycologia, 91:553. doi:10.2307/3761358 2. Chuang, M. F. et al. 2012. Plant Disease 96: 906. https://doi.org/10.1094/PDIS-08-11-0689-PDN. 3. Crous, P. W., et al. 2006. Stud. Mycol. 55:235. https://doi.org/10.3114/sim.55.1.235 4. Ezra et al. 2013. Plant Disease 97: 1513. https://doi.org/10.1094/PDIS-05-13-0535-PDN 5. Lan, G.B. et al. 2012. Plant Disease 96: 1702. https://doi.org/10.1094/PDIS-07-12-0632-PDN 6. Sanahuja et al. 2016. Plant Disease 100: 1499. https://doi.org/10.1094/PDIS-11-15-1319-PDN 7. White, T., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315-322 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA.
  2. Ismail SI, Roslen A
    Plant Dis, 2020 Dec 16.
    PMID: 33325746 DOI: 10.1094/PDIS-08-20-1700-PDN
    Euphorbia tithymaloides L. (zig-zag plant) is a succulent, perennial shrub belonging to the Euphorbiaceae family and is widely cultivated in Malaysia for ornamental purposes and commercial values. In June 2019, typical symptoms of powdery mildew were observed on over 50% of the leaves of E. tithymaloides in a garden at Universiti Putra Malaysia, Serdang city of Selangor province, Malaysia. Initial symptoms included circular to irregular white powdery fungal colonies on both leaf surfaces and later covered the entire leaf surface. Severely infected leaves became necrotic, distorted and senesced. A voucher specimen Ma (PM001-Ma) was deposited in the Mycology laboratory, Faculty of Agriculture, UPM. Microscopic observation showed hyphae hyaline, branched, thin-walled, smooth, 3 to 6 µm wide with nipple-shaped appressoria. Conidiophores were straight, measured 30 to 90 μm long × 8 to 12 μm wide and composed of a cylindrical foot cell, 50 to 75 μm long. Conidia formed in chains were hyaline, ellipsoid to oval with fibrosin bodies, measured 25 to 36 × 16 to 20.1 μm in size and chasmothecia were not observed on the infected leaves. Genomic DNA was directly isolated from mycelia and conidia of isolate Ma using DNeasy Plant Mini Kit (Qiagen, USA). The universal primer pair ITS4/ITS5 of rDNA (White et al. 1990) was used for amplification and the resulting 569-bp sequence was deposited in GenBank (Accession no. MT704550). A BLAST nucleotide search revealed 100% similarity with that of Podosphaera xanthii on Momordica charantia wild from Taiwan (Accession no. KM505135) (Kirschner and Liu 2015). Both the morphological characteristics of the anamorph and ITS sequence data support the identification of this powdery mildew on E. tithymaloides as Podosphaera xanthii (Castagne) U. Braun & Shishkoff (Braun and Cook 2012). A pathogenicity test was conducted by gently pressing the infected leaves onto young leaves of five healthy potted plants. Five noninoculated plants were used as controls. The inoculated plants were maintained in a greenhouse at 25 ± 2°C and the test was repeated. Seven days after inoculation, white powdery symptoms were observed similar to those on the naturally infected leaves, while control plants remained asymptomatic. The fungus on the inoculated leaves was morphologically and molecularly identical to the fungus on the original specimens. Sequence alignments were made using MAFFT v.7.0 (Katoh et al. 2019) and a maximum likelihood phylogram was generated by MEGA v.7.0 (Kumar et al. 2016). Isolate Ma grouped in a strongly supported clade (100% bootstrap value) with the related species of P. xanthii available in GenBank based on the ITS region. Powdery mildew caused by P. xanthii has been reported as a damaging disease that can infect a broad range of plants worldwide (Farr and Rossman 2020). It also has been recently reported on Sonchus asper in China (Shi et al. 2020). According to our knowledge, this is the first report of powdery mildew caused by P. xanthii on E. tithymaloides worldwide. The occurrence of powdery mildew on E. tithymaloides could pose a serious threat to the health of this plant, resulting in death and premature senescence of young leaves.
  3. Ismail SI, Rahim NA, Zulperi D
    Plant Dis, 2020 Dec 21.
    PMID: 33349005 DOI: 10.1094/PDIS-06-20-1371-PDN
    Thai basil (Ocimum basilicum L.) is widely cultivated in Malaysia and commonly used for culinary purposes. In March 2019, necrotic lesions were observed on the inflorescences of Thai basil plants with a disease incidence of 60% in Organic Edible Garden Unit, Faculty of Agriculture in the Serdang district (2°59'05.5"N 101°43'59.5"E) of Selangor province, Malaysia. Symptoms appeared as sudden, extensive brown spotting on the inflorescences of Thai basil that coalesced and rapidly expanded to cover the entire inflorescences. Diseased tissues (4×4 mm) were cut from the infected lesions, surface disinfected with 0.5% NaOCl for 1 min, rinsed three times with sterile distilled water, placed onto potato dextrose agar (PDA) plates and incubated at 25°C under 12-h photoperiod for 5 days. A total of 8 single-spore isolates were obtained from all sampled inflorescence tissues. The fungal colonies appeared white, turned grayish black with age and pale yellow on the reverse side. Conidia were one-celled, hyaline, subcylindrical with rounded end and 3 to 4 μm (width) and 13 to 15 μm (length) in size. For fungal identification to species level, genomic DNA of representative isolate (isolate C) was extracted using DNeasy Plant Mini Kit (Qiagen, USA). Internal transcribed spacer (ITS) region, calmodulin (CAL), actin (ACT), and chitin synthase-1 (CHS-1) were amplified using ITS5/ITS4 (White et al. 1990), CL1C/CL2C (Weir et al. 2012), ACT-512F/783R, and CHS-79F/CHS-345R primer sets (Carbone and Kohn 1999), respectively. A BLAST nucleotide search of ITS, CHS-1, CAL and ACT sequences showed 100% similarity to Colletotrichum siamense ex-type cultures strain C1315.2 (GenBank accession nos. ITS: JX010171 and CHS-1: JX009865) and isolate BPDI2 (CAL: FJ917505, ACT: FJ907423). The ITS, CHS-1, CAL and ACT sequences were deposited in GenBank as accession numbers MT571330, MW192791, MW192792 and MW140016. Pathogenicity was confirmed by spraying a spore suspension (1×106 spores/ml) of 7-day-old culture of isolate C onto 10 healthy inflorescences on five healthy Thai basil plants. Ten infloresences from an additional five control plants were only sprayed with sterile distilled water and the inoculated plants were covered with plastic bags for 2 days and maintained in a greenhouse at 28 ± 1°C, 98% relative humidity with a photoperiod of 12-h. Blossom blight symptoms resembling those observed in the field developed after 7 days on all inoculated inflorescences, while inflorescences on control plants remained asymptomatic. The experiment was repeated twice. C. siamense was successfully re-isolated from the infected inflorescences fulfilling Koch's postulates. C. siamense has been reported causing blossom blight of Uraria in India (Srivastava et al. 2017), anthracnose on dragon fruit in India and fruits of Acca sellowiana in Brazil (Abirami et al. 2019; Fantinel et al. 2017). This pathogen can cause a serious threat to cultivation of Thai basil and there is currently no effective disease management strategy to control this disease. To our knowledge, this is the first report of blossom blight caused by C. siamense on Thai basil in Malaysia.
  4. Choi ED, Kim Y, Lee Y, Jeong MH, Kim GH, Song JH, et al.
    Plant Dis, 2021 Feb 16.
    PMID: 33591825 DOI: 10.1094/PDIS-09-20-1948-PDN
    Pears (Pyrus pylifolia L.) are cultivated nationwide as one of the most economically important fruit trees in Korea. At the end of October 2019, bleeding canker was observed in a pear orchard located in Naju, Jeonnam Province (34°53'50.54″ N, 126°39'00.32″ E). The canker was observed on trunks and branches of two 25-year-old trees, and the diseased trunks and branches displayed partial die-back or complete death. When the bark was peeled off from the diseased trunks or branches, brown spots or red streaks were found in the trees. Bacterial ooze showed a rusty color and the lesion was sap-filled with a yeasty smell. Trunks displaying bleeding symptoms were collected from two trees. Infected bark tissues (3 × 3 mm) from the samples were immersed in 70% ethanol for 1 minute, rinsed three times in sterilized water, ground to fine powder using a mortar and pestle, and suspended in sterilized water. After streaking each suspension on Luria-Bertani (LB) agar, the plates were incubated at 25°C without light for 2 days. Small yellow-white bacterial colonies with irregular margins were predominantly obtained from all the samples. Three representative isolates (ECM-1, ECM-2 and ECM-3) were subjected to further characterization. These isolates were cultivated at 39 C, and utilized (-)-D-arabinose, (+) melibiose, (+)raffinose, mannitol and myo-inositol but not 5-keto-D-gluconate, -gentiobiose, or casein. These isolates were identified as Dickeya sp. based on the sequence of 16S rRNA (MT820458-820460) gene amplified using primers 27f and 1492r (Heuer et al. 2000). The 16S rRNA sequences matched with D. fangzhongdai strain ND14b (99.93%; CP009460.1) and D. fangzhongdai strain PA1(99.86%; CP020872.1). The recA, fusA, gapA, purA, rplB, and dnaX genes and the intergenic spacer (IGS) regions were also sequenced as described in Van der wolf et al. (2014). The recA (MT820437-820439), fusA (MT820440-820442), gapA (MT820443-820445), purA (MT820446-820448), rplB (MT820449-820451), dnaX (MT820452-820454) and IGS (MT820455-820457) sequences matched with D. fangzhongdai strains JS5, LN1 and QZH3 (KT992693-992695, KT992697-992699, KT992701-992703, KT992705-992707, KT992709-992711, KT992713-992715, and KT992717-992719, respectively). A neighbor-joining phylogenetic analysis based on the concatenated recA, fusA, gapA, purA, rplB, dnaX and IGS sequences placed the representative isolates within a clade comprising D. fangzhongdai. ECM-1 to 3 were grouped into a clade with one strain isolated from waterfall, D. fangzhongdai ND14b from Malaysia. Pathogenicity test was performed using isolate ECM-1. Three two-year-old branches and flower buds on 10-year-old pear tree (cv. Nittaka), grown at the National Institute of Horticultural and Herbal Science Pear Research Institute (Naju, Jeonnam Province in Korea), were inoculated with 10 μl and 2 μl of a bacterial suspension (108 cfu/ml), respectively, after wounding inoculation site with a sterile scalpel (for branch) or injecting with syringe (for flower bud). Control plants were inoculated with water. Inoculated branches and buds in a plastic bag were placed in a 30℃ incubator without light for 2 days (Chen et al. 2020). Both colorless and transparent bacterial ooze and typical bleeding canker were observed on both branches and buds at 3 and 2 weeks post inoculation, respectively. No symptoms were observed on control branches and buds. This pathogenicity assay was conducted three times. We reisolated three colonies from samples displaying the typical symptoms and checked the identity of one by sequencing the dnaX locus. Dickeya fangzhongdai has been reported to cause bleeding canker on pears in China (Tian et al. 2016; Chen et al. 2020). This study will contribute to facilitate identification and control strategies of this disease in Korea. This is the first report of D. fangzhongdai causing bleeding canker on pears in Korea.
  5. Li B, Liu X, Jimiao C, Feng Y, Huang G
    Plant Dis, 2020 Nov 13.
    PMID: 33185516 DOI: 10.1094/PDIS-09-20-1930-PDN
    Natural rubber is an important industrial raw material and an economically important perennial in China. In recent years, A new leaf fall disease, caused by Neopestalotiopsis aotearoa Maharachch., K.D. Hyde & Crous, has occurred in Indonesia, Malaysia, Thailand, Sri Lanka, and other major rubber planting countries. In May and July of 2020, this disease was first found on 2-year-old rubber seedlings in two plantations located in Ledong and Baisha counties in Hainan Province, China. In the two plantations of approximately 32 ha, 15% of the rubber seedlings had the disease and the defoliation was more than 20%. The infected leaves turned yellow and watery, and dark brown and nearly round lesions of 1-2 mm in diameter were formed on the leaves. When the humidity was high, the center of the lesion was grey-white, and the lesions had many small black dots, black margins and surrounded by yellow halos. When the disease was severe, leaves fell off. To identify the pathogen, leaf tissues were collected from lesion margins after leaf samples were surface-sterilized in 75% ethanol, rinsed with sterile water for three times, and air dried. The leaf tissues were plated on potato dextrose agar (PDA) and incubated at 28°C for seven days. Fungal cultures with similar morphology were isolated from 90% of tested samples and two isolates (HNPeHNLD2001 and HNPeHNLD2002) were used in pathogenicity and molecular tests. Rubber leaves (clone PR107) were inoculated with conidial suspension (106 conidia/ml), and inoculated with PDA were used as the control, Each treatment had 3 leaves, and each leaf was inoculated with 3 spots and incubated at 28oC under high moisture conditions. Five days later, leaves inoculated with conidial suspension showed black leaf spots resembling the disease in the field, whereas the control leaves remained symptomless. The fungal cultures isolated from the inoculated tissues, had identical morphology compared with the initial isolates. Colonies on PDA were 55-60 mm in diameter after seven days at 28°C, with undulate edges, pale brown, thick mycelia on the surface with black, gregarious conidiomata; and the reverse side was similar in color. Black conidia were produced after eight days of culture on PDA. Conidia were fusoid, ellipsoid, straight to slightly curved, 4-septate, ranged from 18.35 to 27.12 μm (mean 22.34 μm) × 4.11 to 7.03 μm (mean 5.41 μm). The basal cells were conic with a truncate base, hyaline, rugose and thin-walled, 4.35 to 6.33 μm long (mean 4.72 μm). Three median cells were doliform, 12.53 to 18.97 μm long (mean 15.26 μm), hyaline, cylindrical to subcylindrical, thin- and smooth-walled, with 2-3 tubular apical appendages, arising from the apical crest, unbranched, filiform, 14.7 to 25.3 μm long (mean 19.94 μm). The basal appendages were singlar, tubular, unbranched, centric, 3.13 to 7.13 μm long (mean 5.48 μm). Morphological characteristics of the isolates were similar to the descriptions of N. aotearoa (Maharachchikumbura et al. 2014). The rDNA internal transcribed spacer (ITS) region, translation elongation factor 1-αgenes (TEF), and beta-tubulin (TUB2) gene were amplified using the primer pairs ITS1/ITS4, EF1-728F/EF1-986R and T1/Bt-2b (Pornsuriya et al. 2020), respectively. The sequences of these genes were deposited in GenBank (ITS Accession Nos.: MT764947 and MT764948; TUB2: MT796262 and MT796263; TEF: MT800516 and MT800517). According to the latest classification of Neoprostalotiopsis spp. (Maharachchikumbura et al. 2014) and multilocus phylogeny, isolates HNPeHNLD2001 and HNPeHNLD2002 were clustered in the same branch with N. aotearoa. Thus, the pathogen was identified as N. aotearoa, which is different from N. cubana and N. formicarum reported in Thailand (Pornsuriya et al. 2020; Thaochan et al. 2020). The Neopestalotiopsis leaf spotdisease of rubber tree (H. brasiliensis) was one of the most serious and destructive leaf diseases in major rubber planting countries in Asia. ( Tajuddin et al. 2020) The present study of leaf fall disease on rubber tree caused byN. aotearoa is the first report in China. The finding provides the basic pathogen information for further monitoring the disease and its control.
  6. Wei Z, Duan F, Yu D, Luo S, Yang M, Li R
    Plant Dis, 2024 Mar 18.
    PMID: 38499972 DOI: 10.1094/PDIS-09-23-1911-PDN
    In February 2022, leaf zonate spot disease afflicted Aloe vera L. in Yunnan, China, endangering the $39 billion industry with 0.33ha under cultivation (Wan 2015). The disease manifested with watery spots progressing into oval or circular necrosis lesions, characterized by a dark center surrounded by a gray-brown zone. In the late stage of the disease, lesions regress in size and several small dark picnidia dots appeared on the gray-brown zone. The disease incidence ranged from 10% to 15% in three commercial plantations. If left uncontrolled, the disease could diminish the commercial value of Aloe vera plants. Eighteen symptomatic leaf samples underwent morphological and genetic identification. The samples were carefully washed with distilled water and 1×1 cm2 sections of tissue were excised using a sterile scalpel. The sections underwent surface-disinfection with 3% NaOCl for 3 min and 75% ethanol for 30 s. After three sterile water rinses the sections were air-dried. Subsequently, they were transferred to potato dextrose agar (PDA) before being incubated at 25 ℃ in the dark. Of the 18 samples, eight produced the colonies with similar morphological characteristics, named LH7. Isolate LH7 had downy to woolly aerial mycelia, initially pinkish white on the surface, and gradually turned greenish-olivaceous from the middle, and eventually turned dark brown to black after seven days. The fungus formed arthric chains in the aerial mycelium on PDA but did not produce conidiomata. The conidia, which occurred in arthric chains were 5.50-9.9 × 4.08-7.51 μm (mean 7.09× 5.26 μm, n=50) in size, cylindrical, brown, and 0-1 septate. To ascertain LH7's pathogenicity, three healthy one-year old aloe plants were surface-sanitized with a 1% aqueous chlorine solution, rinsed with sterile water, and dried. Three leaves from each plant were punctuated and inoculated using conidial suspension (100 μl of 1x 106 conidial mL-1), while three control plants were inoculated with sterile distilled water. The pathogenicity tests were repeated twice. The inoculated plants were kept at 25 ℃ with a 12-hour light/12-hour dark cycle. After seven days, symptoms observed in the field appeared in the plants, while no disease occurred in the control plants. After 21 days, conidiomata formed on the inoculated leaves, averaging 116.92 μm (n=20) in diameter. These conidiomata were globose to subglobose, and brown to sub-brown. The fungus was successfully re-isolated from symptomatic tissue and the resulting colonies were morphologically consistent with isolate LH7. Based on the characteristics, the fungus was identified as Neoscytalidium dimidiatum (Philips et al. 2013). The specimen was deposited in China Center for Type Culture Collection ( CCTCC AF 2024001). This identification was confirmed through sequencing of ITS gene region of rDNA using ITS1/ITS4 (Imran et al. 2022). The sequence was submitted into GenBank database (ON878059). BLAST analysis of the LH7's ITS amplicon showed 100% similarity with that of JN093303.1. A phylogenetic tree constructed using the maximum likelihood method revealed that ON878059 was clustered with JN093303.1. Previous studies have documented that pathogens such as Colletotrichum gloeosporioides (Penz.), Fusarium spp. and Rhizopus oryzae can also cause diseases in A. vera in China (Zhou et al. 2008; Ding et al. 2015). Additinonally, Cladosporium sphaerospermum, Pseudopestalotiopsis theae, and Lasiodiplodia theobromae have been identified as causal agents of aloe leaf spot diseases in India, Bangladesh and Malaysia (Avasthi et al. 2016; Ahmmed et al. 2022; Khoo et al. 2022). To our knowledge, this is the first report of N. dimidiatum causing leaf necrosis of aloe in China. Vigilant surveillance and disease control measures are imperative to mitigate potential losses in this region.
  7. Khoo YW, Hui Teng T, Khaw YS, Li S, Chong KP
    Plant Dis, 2022 Jan 31.
    PMID: 35100032 DOI: 10.1094/PDIS-12-21-2646-PDN
    Aloe vera L. var. chinensis (Haw.) Berg. (family Asphodelaceae), locally known as 'Lidah Buaya', is an economically important plant as the gel from the leaves possesses anti-inflammatory, anti-arthritic, antibacterial, and hypoglycemic properties and is used for cosmetic, pharmaceutical and healing purpose in Malaysia. In July 2021, irregular black sunken spots (3- to 10-mm in diameter) were observed on the leaves of 'Lidah Buaya' plants under leaf development stage in the field located in the district Penampang of Sabah province (N5°56'37.1" E116°04'21.5"). The disease severity was about 30% with 10% incidence. The tissues surrounding the black spots became brown and dry when the plants grew older. No gel contained in the sunken zones. Symptomatic leaf tissues (5 x 5 mm) were cut from the infected margin, surface sterilised with 75% ethanol for 1 minute, washed with 2% sodium hypochlorite solution for 1 minute, rinsed, and air dried before plating on five potato dextrose agar (PDA) plates (pH 7). Plates were incubated at 25°C for 3 days in the dark. Greyish-white fluffy mycelia were observed, and then became dark grey with age. Dark pigmentation in each plate was produced after a week of incubation at 25°C. A representative isolate Penampang was further characterized morphologically and molecularly. Immature conidia were single-celled, aseptate, ellipsoid and hyaline, measuring 19.4 × 24.5 µm (n = 30). Mature conidia were brown, thick-walled and one-septate with longitudinal striations, 22.5 × 28.3 µm (n = 30). Genomic DNA was extracted from fresh mycelia of isolate Penampang based on the extraction method described by Khoo et al. (2021) with additional of mechanical disruption using micro pestle before heating. KOD One PCR master mix (Toyobo, Japan) containing hot-start modified KOD DNA polymerase was used for PCR amplification. The PCR condition were 94°C for 10 s, 55°C for 5 s and 72°C for 2 s, for 30 cycles, and initial denaturation of 94°C for 3 min and a final extension step of 72°C for 5 min. The internal transcribed spacer (ITS) region of rDNA and tubulin (TUB) genes were amplified using ITS1/ITS4 and T10/Bt2b primer sets, respectively (O'Donnell et al. 1997; White et al. 1990). The products were then sent to Apical Scientific Sdn. Bhd. for sequencing. The generated ITS (OK209451) and TUB (OL660667) were 100% identical to L. theobromae isolate MRR-161 and CPC:27690 (GenBank MW282884 and MT592639, respectively) in BLASTn analysis. Phylogenetic analysis using maximum likelihood based on the combined ITS and TUB sequences indicated that the isolates formed a supported clade (91% bootstrap value) to the related L. theobromae. The morphological and molecular characterization of the fungus matched L. theobromae described by Pečenka et al. (2021). Mycelial agar plugs (5-mm-diameter) from 7-day-old PDA culture of Penampang isolate were placed onto pinpricked leaves of three 2-month-old 'Lidah Buaya' plants. Pinpricked leaves of three 2-month-old 'Lidah Buaya' plants received sterile 5-mm-diameter PDA agar plugs to serve as controls. The inoculated 'Lidah Buaya' plants were covered with plastics for 48 h, and were incubated at 25°C. All inoculated leaves developed symptoms as described above 6 to 7 days post-inoculation, whereas no symptoms occurred on controls, thus fulfilling Koch's postulates. The experiments were repeated twice. The reisolated fungus was identical to representative isolate Penampang morphologically and molecularly. L. theobromae was reported previously on A. vera in Cuba (Urtiaga 1986) and India (Mathur 1979). To our knowledge, this is the first report of L. theobromae causing leaf spot on A. vera in Malaysia. The occurrence of this disease emphasizes the importance of disease surveillance in the region. Plant disease management strategies need to be established to reduce the losses.
  8. Imran M, Khanal S, Zhou XS, Antony-Babu S, Atiq M
    Plant Dis, 2022 Feb 14.
    PMID: 35156847 DOI: 10.1094/PDIS-10-21-2253-PDN
    Multiple diseases, including brown spot (Cochliobolus miyabeanus), leaf spot (Epicoccum sorghimum), and blast (Magnaporthe oryzae), can cause spot-like symptoms on the leaves of rice. In July 2021, a disease showing symptoms like brown spot was observed in an 8-hectare field of rice, with disease incidence of >30%, in Beaumont, Texas. Lesions started as small pinhead-size blackish spots on leaf tips or from the edges of leaf blades. The spots enlarged to become irregular (most) or oval brown spots with a slight chlorotic halo. Diseased leaves were collected, washed in running tap water and cut into small pieces. Pieces of the tissue were surface sterilized with 1%NaOCl for 2 min followed by 75% ethanol for 30 s and then washed in sterile distilled water three times with each time lasting for 1 min. The disinfected tissue pieces were air dried, placed on potato dextrose agar (PDA) medium and incubated at 25℃. Initially fungal colonies were hairy in texture with light dark brown center and whitish edge and dark brown pigmentation at the reverse side. Mature colonies turned to black in the center and dark brown toward the edge, with black at the reverse side after 2 or more weeks of incubation. Conidia were oval to narrowly oblong, rounded at the ends, with 2 to 6 distoseptate, and 15 to 35 × 6 to 10 µm in size. These morphological characteristics were similar to those described for Curvularia hawaiiensis (Aslam et al. 2019; Ellis 1971; Kusai et al. 2015). For molecular identification, DNA was extracted and the two different rRNA regions internal transcribed spacer (ITS) and large subunit (LSU), and the two genes RNA Polymerase II (RPB1) and translation elongation factor 1 alpha (EF1) of the fungus were amplified using the primers of ITS1/ITS4 (Wang et al. 2014), D1/D2 domain region of LSU (Fell et al. 200), and RPB1 and EF1 (Wang et al. 2014), respectively, and sequenced. The ITS sequence (OK397200) was 98.27% identical to C. hawaiiensis (KP131943); the EF1 sequence (OK492159) was 99.78% identical to C. hawaiiensis (KC503942); the LSU sequence (OK397295) was 98.96% identical to multiple C. hawaiiensis (MN055715, MH160813, MH875853, etc.); the RPB1 sequence (OK492160) was 97.41% identical to C. hawaiiensis (JN992363). To evaluate pathogenicity, three rice plants (cv. Presidio) at the 3-leaf stage were spray inoculated with a conidial suspension of 1 x 106 conidia/ml. Another set of three plants that were sprayed with sterilized distilled water served as the controls. Treated plants were maintained in a greenhouse with temperature ranging from 25 to 30℃. After 2 weeks, typical symptoms, like those observed in the field, developed on the inoculated plants while no symptoms developed on the control plants. The same fungus was consistently re-isolated from the diseased plants. The pathogenicity test was conducted three times with similar results. To our knowledge, this is the first report of brown leaf spot caused by C. hawaiiensis in rice in the United States. Curvularia species are frequently associated with rice grain and cause blackish discoloration symptoms on grain kernels. Recently, however, C. hawaiiensis has also been reported to cause brown leaf spot in Malaysia (Kusai et al. 2015) and Pakistan (Aslam et al. 2019). This research will help identify this disease from other leaf spot-like diseases and develop effective management strategies.
  9. Rahman MZ, Ahmad K, Siddiqui Y, Saad N, Hun TG, Mohd Hata E, et al.
    Plant Dis, 2021 Aug 02.
    PMID: 34340562 DOI: 10.1094/PDIS-05-21-1027-PDN
    Watermelon (Citrullus lanatus) accounts for almost 13% of all tropical fresh fruit production in Malaysia. They are grown, mostly in Johor, Kedah, Kelantan, Pahang, and Terengganu areas of Malaysia on 10,406 ha and yielding 172,722 Mt. In 2019, a new fruit rot disease was observed in two major production areas in Peninsular Malaysia. Disease symptoms included water-soaked brown lesions on the fruit surface in contact with the soil. The lesions enlarged gradually and ultimately covered the whole fruit with white mycelium leading to internal fruit decay. Disease surveys were conducted in December 2019 and November 2020 in fields at Kuantan, Pahang and Serdang, Selangor. Disease incidence was 10% in 2019 and 15% in 2020. Infected fruits were collected and washed under running tap water to wash off adhering soil and debris. Fruit tissue sections 1 to 2 cm in length were surface sanitized with 0.6% sodium hypochlorite (NaOCl) for 3 min. and washed twice with sterile distilled water. The disinfected air-dried tissues were then transferred onto potato dextrose agar (PDA) media and incubated at 25±2℃ for 3 days. Fungal colonies with whitish mycelium and pink pigment isolated using single spore culture. The pure cultures were placed onto carnation leaf agar (CLA), and the culture plates were incubated at 25±2℃ for 15 days for morphological characterization. On CLA, macroconidia were produced from monophialides on branched conidiophores in orange sporodochia. Macroconindia were thick-walled, strong dorsiventral curvature, 5 to 7 septate with a tapered whip-liked pointed apical cell and characteristic foot-shaped basal cell, 21.9 to 50.98 μm long and 2.3 to 3.60 μm wide. Typical verrucose thick chlamydospores with rough walls were profuse in chains or clumps, sub-globose or ellipsoidal. Based on morphological characteristics they were identified as Fusarium equiseti (Leslie and Summerell 2006). Molecular identification of both U4-1 and N9-1 pure culture isolates were carried out using two primer pair sets; internal transcribed spacer (ITS) ITS-1/ ITS-4 and translation elongation factor 1 alpha (TEF1-α) (EF-1/EF-2). A Blastn analysis of the ITS gene sequence of U4-1(MW362286) and N9-1 (MW362287) showed >99% similarity index to the reference gene sequence of F. equiseti isolate 19MSr-B3-4 (LC514690). The TEF1-α sequences of U4-1 (accession no. MW839563) and N9-1 (accession no. MW839564) showed 100% identity; with an e-value of zero, to the reference gene sequence of F. equiseti isolate URM: 7561 (accession no. LS398490). Each isolate also had a >99% identity with isolate NRRL 34070 (accession no. GQ505642) in Fusarium MLST database that belongs to the F. incarnatum-equiseti species complex (O'Donnell et al. 2015). Based on phylogenetic analysis of the aligned sequences (TEF1-α) by the maximum likelihood method, the U4-1 and N9-1 isolates were confirmed to be F. equiseti as was reported in Georgia, USA (Li and Ji 2015) and in Harbin, Heilongjiang Province, China (Li et al. 2018). Finally, the two pure culture isolates of U4-1 and N9-1 were used to fulfill Koch's postulates. Stab inoculations of five healthy watermelon fruits (cv. 345-F1 hybrid seedless round watermelon) were performed with a microconidial suspension of individual isolates (4x106 spores/mL). Five control fruits were stabbed with double distilled water. The inoculated fruits were incubated under 95% relative humidity at a temperature of 25±2℃ for 48 h followed by additional incubation inside an incubator at 25±2℃ for 8 days. Ten days post-inoculation, the control fruits showed no disease symptoms. However, inoculated fruits exhibited typical symptoms of fruit rot disease like water-soaked brown lesions, white mycelium on the fruit surface and internal fruit decay, which is similar to the farmer's field infected fruits. The suspected pathogen was successfully re-isolated from the symptomatic portion of inoculated fruit and morphologically identified for verification. To our knowledge, this is the first report of F. equiseti causing fruit rot of watermelon in Malaysia. Malaysia exports watermelon year-round to many countries around the world. The outbreak of this new fruit rot disease could potentially pose a concern to watermelon cultivation in Malaysia.
  10. Khoo YW, Rosina B, Amiruddin S, Tan HT, Khaw YS, Li S, et al.
    Plant Dis, 2022 Dec 21.
    PMID: 36541883 DOI: 10.1094/PDIS-08-22-1939-PDN
    Rice (Oryza sativa L.) has been farmed in Malaysia since ancient times and is one of the most important commercial crops (Ma'arup et al. 2020). Throughout January to August 2022, chlorotic spots with brown halos ranging 2 to 10 mm wide were found on upper leaves of rice variety Mahsuri in the vegetative stage with a severity and incidence of approximately 60% and 100%, respectively in Kampung Tagas, Sabah, Malaysian Borneo (06°09'41.8"N, 116°13'45.1"E). As the disease developed, the spots coalesced into larger chlorotic spots. Three leaf pieces (5 x 5 mm) were excised from lesion margins, surface sterilized based on Khoo et al. (2022a), before plating on water agar (WA) at 25°C. Purification of fungi was conducted on WA using hyphal tip isolation. When three pure cultures were obtained, the fungi were cultured on potato dextrose agar (PDA) and WA for 7 days in 12 h light and 12 h dark at 25°C for the macro- and micro-morphological characterization, respectively. The colonies of the three isolates on PDA were initially gray, later becoming dark. Conidia (n=30) were fusiform, smooth-walled, dark-brown, and melanized with three transverse septa, measuring 7.3 to 11.4 × 16.2 to 27.2 µm. The isolates were named Tagas01, Tagas02, Tagas03. Genomic DNA was extracted from fresh mycelia of the pathogens based on the extraction method described by Khoo et al. (2022b). The primers ITS1/ITS4 (White et al. 1990), GPD1/GPD2 (Berbee et al. 1991), and EF1-983F/EF1-2218R (Schochet al. 2009) were used to amplify the internal transcribed spacer (ITS) region of rDNA, partial fragments of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and translation elongation factor (EF-1α) region, respectively based on PCR conditions as described previously (Khoo et al. 2022a). The sequences were deposited in GenBank under accession numbers OP268402, OP271304, OP271305 (677/677 bp) (ITS), OP270699, OP270703, OP270704 (609/613 bp) (GAPDH), OP270700-OP270702 (928/930 bp) (EF-1α). They were 99.35-100% similar to the Curvularia lunata ITS (HF934911), GAPDH (LT715821), and Curvularia dactyloctenicola EF-1α (MF490858) type sequences. Although C. dactyloctenicolais related to C. lunata, the conidia of the former are much wider making them easier to differentiate (Marin-Felix et al. 2017). Phylogenetic analysis using maximum likelihood based on the combined ITS, GAPDH and EF-1α sequences indicated that the isolate formed a supported clade to C. lunata. The pathogens were identified as C. lunata based on morphological and molecular characterization. Koch's postulates were performed. Three replicate healthy rice at the vegetative stage were sprayed with a spore suspension of 1 × 106 spore/ml in distilled sterilized water, prepared from 1-week-old fungal culture, grown in the dark on WA. Three replicate rice plants were sprayed with distilled sterilized water as control. Plants were covered with transparent polyethylene bags to keep moisture, and kept in a greenhouse at ~27°C. Bags were removed after 4 days of incubation. Monitoring and incubation were performed in greenhouse based on Iftikhar et al. (2022). The pathogenicity test was also performed using isolate Tagas02 and Tagas03. All inoculated leaves developed symptoms as described after 6 days post-inoculation, whereas no symptoms occurred on controls. The experiments were repeated twice. The reisolated fungi were identical to the pathogen morphologically and molecularly, thus fulfilling Koch's postulates. C. lunata has been reported in Peninsular Malaysia (Lee et al. 2012). This is the first report of C. lunata causing leaf spot on Oryza sativa in Sabah, Malaysian Borneo. This illness not only reduces yields and lowers milling quality, but it may also be mistaken for rice blast, necessitating needless fungicide spraying.
  11. Khoo YW, Baadu R, Hui Teng T, Khaw YS, Li S, Chong KP
    Plant Dis, 2022 Dec 12.
    PMID: 36510434 DOI: 10.1094/PDIS-10-21-2266-PDN
    Basella alba is an evergreen perennial vine that grows as an edible leafy vegetable in Malaysia (Nordin et al. 2007). During January 2021, a cottony white hypha associated with aggregates of white to brown sclerotia and symptoms of damping-off were visualized on the stem base of B. alba at the soil surface in an isolated field (~0.03 ha) located in the district of Penampang, Sabah province, Malaysia (5°56'51.0"N 116°04'31.8"E). Yellowing and wilting of leaves, and defoliation were observed after four days of the development of damping-off. Survey was conducted on 100 plants which 30 were found infected. The disease severity (90%) on stems was estimated using IMAGEJ. Symptomatic stem tissues were surface sterilized with 75% of ethanol for 1 min, washed with 2% of sodium hypochlorite solution for 1 min, rinsed thrice with sterile distilled water, air dried and plated on potato dextrose agar (PDA). Plates were incubated for 7 days at 25°C in the dark. After 7 days, fungi were isolated; colony color was white and had a cottony appearance. On day 14, white to brown sclerotia 1.0 to 2.2 mm in diameter were produced. Hyaline septate hyphae with clamp connections and multiple nuclei were seen. Conidia and conidiophores were absent from the colony on PDA. Genomic DNA of fungi was extracted based on Khoo et al. (2022a and 2022b). PCR amplification (Khoo et al. 2022b) was performed using primer set ITS1/ITS4, EF983/EF2218 and LR0R/LR05 to amplify the internal transcribed spacer (ITS) region of rDNA, partial translation elongation factor 1 alpha (TEF-1α) gene and partial large subunit ribosomal RNA (LSU rRNA) gene, respectively (Vilgalys and Hester 1990; White et al. 1990; Carbone and Kohn, 1999; Rehner 2001). Phylogenetic analysis indicated that the isolates formed a supported clade to the related Athelia rolfsii sequences. The sequencing result (GenBank Accession Nos. OK465460, OP809607, OP857217) had a 99% identity over 625 bp, 941 bp, and 1,101 bp with the corresponding gene sequence of A. rolfsii (GenBank Accession Nos. MN622806, AY635773, MW322687) after analysis in BLASTn program. Pathogenicity test was performed based on Le (2011). Three 8-week-old B. alba plants cultivated on sterilized soil were inoculated with 5-mm mycelia plugs from 7-day-old culture. A plug was put on the upper soil surface layer 2 cm away from the base of the stem of B. alba plant before fully covered with a layer of sterilized soil. Plants that were inoculated with sterile PDA plugs served as the control treatment. Plastic bags were used to cover the plants after inoculation for 24 h before keeping them in a glasshouse under ambient conditions. Water-soaked and brown lesions were visualized on the stem base of all inoculated plants after four days of inoculation. Symptom of damping-off and leaf blight was observed after another 3 days. No symptoms developed on the mock controls. The pathogenicity test was repeated twice. Re-isolation was performed from the symptomatic tissues of inoculated plants and mock controls. The isolates reisolated from the symptomatic tissues were verified as A. rolfsii based on morphology and molecular characterization, thus fulfilling Koch's postulates. No pathogens were isolated from the mock controls. To our knowledge, this is the first report of A. rolfsii causing damping-off and leaf blight on B. alba in Malaysia, as well as worldwide. Our findings documented the wider geographical and host range of A. rolfsii and indicate its potential threat to B. alba production in Malaysia.
  12. Zhu R, Liu YL, Li H, Liu J, Han X
    Plant Dis, 2022 Nov 09.
    PMID: 36350731 DOI: 10.1094/PDIS-05-22-1120-PDN
    Garcinia mangostana L. is a famous tropical fruit in Asia. In April 2021, a leaf disease on G. mangostana cv. Huazhu was observed in Zhanjiang (21.17° N, 110.18° E), Guangdong province, China. Symptoms was on new leaves of 2 year old plants. The spots were circular to irregular, gray in the center, and brown on the lesion margin. The disease incidence was estimated 25% (n = 500 investigated plants from about 50-ha). Twenty diseased leaves were collected from the orchard. The margin of the diseased tissues was cut into 2 mm × 2 mm pieces; surface disinfected with 75% ethanol and 2% sodium hypochlorite for 30 and 60 s, respectively; and rinsed thrice with sterile water. The tissues were plated onto potato dextrose agar (PDA) medium and incubated at 28 ℃. Twenty-eight isolates were obtained (isolation frequency = 28/4×20 = 35%). Single-spore isolation method was used to recover pure cultures for three isolates (GMN-1, GMN-2, and GMN-3) (Liu et al. 2021). The colonies were initially white with cottony aerial mycelium at 7 days on PDA. Then, they developed black acervular conidiomata at 10 days. Conidia were clavate to fusiform, four-septate, straight or slightly curved, and measured 16.5 to 21.4 µm long (average 19.5 µm; n = 40) × 4.5 to 6.5 µm wide (average 5.2 µm; n = 40). The three median cells were versicolored, whereas the basal and apical cells were hyaline. Conidia had a single basal appendage (4.5 to 5.5 µm long; n = 40) and three apical appendages (19.2 to 24.5 µm long; n = 40). The morphological characteristics of the isolates are comparable with those of the genus Neopestalotiopsis (Sajeewa et al. 2012). Molecular identification was performed using the colony polymerase chain reaction method with MightyAmp DNA Polymerase (Takara-Bio, Dalian, China) (Lu et al. 2012). Sequences were generated from the isolates using primers for the rDNA ITS (ITS1/ITS4), TEF1-α (EF1-728F/EF1-986R), and β-tubulin (T1/βt2b) loci (Sajeewa et al. 2012). The sequences of the isolates were submitted to GenBank (ITS, MZ026535-MZ026537; TEF, MZ032203-MZ032205; β-tubulin, MZ032206-MZ032208). The sequences of the isolates were 100% identical to the type strain MFLUCC12-0281 (accession nos. JX398979, JX399014, and JX399045) through BLAST analysis. The isolates clustered with N. clavispora (MFLUCC12-0280 and MFLUCC12-0281). The pathogenicity was tested in vivo. Individual plants (cv. Huazhu) were grown (n = 2, 1-1.5 year old) in a greenhouse at 24 ℃-30 ℃ with 80% relative humidity. Wounded leaflets were inoculated with 5-mm-diameter mycelial plugs or agar plugs (as control). Besides, sterile cotton balls were immersed in the spore suspension (1 × 105 per mL) and sterile distilled water (control) for about 15 s before they were fixed on the leaves for 3 days. One plant employed for each isolate with nine leaves. The test was performed thrice. Disease symptoms were found on the leaflets after 10 days, whereas the controls remained healthy. The pathogen was re-isolated from infected leaves and phenotypically identical to the original isolates to fulfill Koch's postulates. Neopestalotiopsis clavispora and Pestalotiopsis clavispora are synonyms. The fungus appeared to have a wide host range and distribution including in Thailand, Malaysia, North Queensland, and Australia (Sajeewa et al. 2012;Shahriar et al. 2022). Thus, this is the first report of N. clavispora causing leaf spot on G. mangostana in China. This finding will help improve management strategies against the leaf spots on G. mangostana in China.
  13. Zhao Y, Xiao M, Yan C, Hu FC, Zhang S, Wang X, et al.
    Plant Dis, 2023 Feb 23.
    PMID: 36825316 DOI: 10.1094/PDIS-11-22-2740-PDN
    Jackfruit (Artocarpus heterophyllus) is an important tropical commercial fruit crop grown in Hainan province, China. In recent years, severe jackfruit bronzing disease has been found in 11 cities and counties in Hainan. On average, 80% of trees in a jackfruit orchard are affected once bronzing disease is detected. The disease is characterized by yellow-orange to reddish discoloration of the pulp and rags of infected fruit (Hernández-Morales et al. 2017). Jackfruit bronzing disease has been reported previously in the Philippines (Gapasin et al. 2012), Malaysia (Zulperi et al. 2017), and Mexico (Hernández-Morales et al. 2017). Diseased samples of jackfruit 'Tai Eight' with the bronzing symptoms were collected from a plantation in Changjiang, Hainan. The samples were sterilized with 75% ethanol for 30 s, then soaked with 1% sodium hypochlorite for 8 min, and rinsed with sterilized distilled water. The sterilized tissues were ground in 2 mL sterile water, and allowed to stand for 30 min. Then, 500 μL of the supernatant was spread on Glucose-Yeast agar medium and incubated overnight at 28ºC. Representative bacterial colonies were lemon-yellow, convex and smooth, transparent with entire edges. Colonies were Gram-negative, positive for catalase and gelatin liquefaction, which were consistent with the characteristics of P. stewartii subsp. stewartii. In PCR amplifications, an 920 bp amplicon of strain JTPE2 with the primers ES16/ESIG2c (Coplin et al. 2002) and an 1100 bp amplicon of strain JTPC2 with the primers CPSL1/CPSR2c (Ibrahim et al. 2019) were obtained, whereas no bands were observed for the negative control samples. The ES16/ESIG2c and CPSL1/CPSR2c fragments were sequenced for nucleotide BLAST (BLASTn) searches of the NCBI database and phylogenetic tree construction. The obtained ES16/ESIG2c sequences (SAR accession no. SRR22405292) showed 99.07%-99.60% similarity with P. stewartii subsp. stewartii (CP017581, AJ311838 and MF598163). The obtained CPSL1/CPSR2c sequences (SAR accession no. SRR22405293) showed 99.40%-99.99% similarity with P. stewartii subsp. stewartii (MW971422, MH752485 and MH257287). Phylogenetic analysis based on cpsDE sequences (Ibrahim et al. 2019) using the maximum likelihood method revealed that strains JTPE2 and JTPC2 were clustered together with P. stewartii subsp. stewartii. A pathogenicity test was conducted by injecting 2 mL of 108 CFU/ml bacterial suspension into pulp from healthy, surface-sterilized jackfruit. Pulp injected with sterilized distilled water served as a negative control. All inoculated samples produced bronzing symptoms from 2-3 weeks post-inoculation similar to the field-observed symptoms, whereas control fruit were asymptomatic. The strains were reisolated from symptomatic jackfruit pulp to complete Koch's postulates. The bacterial suspension was inoculated on 2-week-old maize seedlings to supplement in vivo pathogenicity testing. Typical Stewart's disease leaf symptoms were visible at 2 weeks post-inoculation. Based on morphological, biochemical, and physiological evidence, pathogenicity tests, and molecular analyses, the pathogenic bacterium isolated from 'Tai Eight' jackfruit was identified as P. stewartii subsp. stewartii. To our knowledge, this is the first report of bronzing disease caused by P. stewartii subsp. stewartii on jackfruit in China, which may assist in preventing the global spread of jackfruit bronzing disease.
  14. Ren H, Yang G, Qing-Kang F, He S, Huang Q
    Plant Dis, 2023 Mar 01.
    PMID: 36856643 DOI: 10.1094/PDIS-11-22-2537-PDN
    Elaeagnus conferta Roxb. is a perennial evergreen climbing shrub and is mainly native to India, Vietnam, Malaysia, and South China (Gupta & Singh, 2021). Various parts of this plant are used to treat multiple diseases(Gupta et al., 2021). Between during the months of March and April of 2021, in Kunming city of grower fields, Yunnan Province (N 25°02'; E 102°42'), southwest China. Some postharvest E. conferta fruits showed brown spots of decay with a greyish mycelium, which symptom only appears on fruit, and did not find it on this plant. The incidence of this disease in postharvest E. conferta fruits ranges from 45 % to 65 % in natural conditions. This pathogen is harmful and causes many plant diseases. Such as rice, oriental persimmon, pear, panicles of mango, and so on (Cho & Shin, 2004; Guillén-Sánchez et al., 2007; Lee et al., 2009). The infected fruit samples surface was disinfected with 75 % ethanol and 0.3 % NaClO for 30 s and 2 min respectively, then aseptic water washing three times. The fruit tissue is rich in carbohydrates and water content, which aid the growth of fungal species. Putting these diseased tissues on a potato dextrose agar (PDA) medium, cultured at 25 ± 1 ℃ for 7 days. The colonies grow on the PDA medium, then separated and puried again. Three pure cultures (YNGH01, YNGH03, YNGH05) were obtained, which were stored in 15 % glycerol at -80 ℃ refrigerator in the State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University. After 7 days of cultivation, the colonies were round and the diameter attained up to 38 mm, the surface of the colony showed tiled, fluffy, with a velvet-like texture, greyish-green to smoke-gray, slightly raised in the middle, the edges were radial hollow and wrinkle (Fig. 1A). Conidiophores were solitary, erect, unbranched or rarely branched, slightly flexuous at the apex, septate, dark brown, 254 to 680 µm long, 3.6 to 4.5 µm wide, top of the conidiophores or the rostral were slightly swollen (Fig. 1B). Conidia were light gray or grey, solitary or bispora, irregular in shape and size (Fig. 1C), nearly circular (3.21 × 3.31 µm), oval to lemon-shaped (6.59 × 3.21 µm) or elliptical (8.35 × 4.65 µm). The CTAB method extracts 3 isolates (YNGH01, YNGH03, YNGH05) genomic DNA (Aboul-Maaty & Oraby, 2019). To confirm identity with molecular identification, performed by three different genomic DNA regions, fragments of internal transcribed spacer (ITS), partial translation elongation factor-1 alpha (TEF-1α), and actin (ACT) genomic regions. These genomic DNA were amplified with primers ITS1/4, EF1-728F/986R, and ACT-512F/783R, respectively (Carbone & Kohn, 1999). The sequences of these isolates were uploaded to GenBank (YNGH01: ON753810, ON868696, ON912090 YNGH03: ON753812, ON868698, ON912092, and YNGH05: ON753814, ON868700, ON912094). NCBI's BLASTn search of those ITS sequences showed 99.81% similar to C. tenuissimum (MG873077.1), and sequences TEF-1α and ACT were 100% identical to several isolates of C. tenuissimum (OM256526.1 and MT154171.1). Combined the ITS region, TEF-1α, and actin (ACT) genomic regions of isolates YNGH01, YNGH03 and YNGH05 to construct a phylogenetic tree with MEGA11. Maximum likelihood phylogenetic analyses further confirmed the results (Fig. 2)(Santos et al., 2020). Healthy and mature E. conferta fruits were used for pathogenicity test. Pathogens were washed with sterilized water at a final concentration of 2× 106 spores/mL (Jo et al., 2018). The test was divided into A and B groups (A: The surface of fruits was pierced with a sterilized needle that carried pathogenic fungus of final concentration at 2×106 spores/mL B: Sprayed at the concentration of 2×106 spores/mL on fruits). The control fruits were treated with sterilized water and stored at 25 ± 1 ℃ with a relative humidity of 80 %, average group with 10 fruits in this test, which was repeated three times. After 7 days, the fruits of group A were initially sesame seed size of the disease spots, nearly round, irregular, with grayish-brown spots, and slightly depressed. Later, the lesion gradually turns dark brown (Fig. 1D). And group B began with small patches of brown fungal growth on the pericarp, with the development of the disease, the necrotic spots enlarged and developed irregular and coalesced, the color of spots became gray or black gradually (Fig. 1E). The symptoms were similar to previously observed and the pathogen was reisolated and identified as C. tenuissimum. Control fruits were healthy (Fig. 1F). The pathogens test fulfilled Koch's postulates. According to morphology (Bensch et al., 2012), rDNA-ITS, TEF-1α, and ACT sequence analysis, phylogenetic analysis, and pathogenicity test, the pathogen was identified as C. tenuissimum. To our knowledge, this is the first report of C. tenuissimum occurring on E. conferta fruits in China.
  15. Urbina H, Jones C, Moore M, Gazis R
    Plant Dis, 2023 Mar 01.
    PMID: 36856652 DOI: 10.1094/PDIS-01-23-0134-PDN
    Monstera deliciosa Liebm. (Araceae, Monocots), sometimes referred to as Swiss cheese plant, is one of the most common aroids used as an indoor and landscape ornamental plant (Cedeño et al. 2020). Production of M. deliciosa and other closely related Araceae species represents an important sector of the ornamental nursery business worldwide. Swiss cheese plant is believed to have originated in the tropical forests of southern Mexico, where its fruit is considered a delicacy due to its sweet, exotic flavor (Cedeño et al. 2020). Since 2019, symptomatic Monstera plants from two plant nurseries and residential properties in South Florida were submitted for disease diagnosis to the Florida Department of Agriculture and Consumer Services, Division of Plant Industry (FDACS-DPI) in Gainesville, Florida, and to the University of Florida, Tropical Research and Education Center Plant Clinic in Homestead, Florida. Symptoms included small chlorotic spots on the leaf surface, which expanded and became brown to reddish-brown often with a yellow halo and produced uredinia with abundant urediniospores. The pathogen was identified morphologically as the rust fungus Pseudocerradoa (=Puccinia) paullula (Syd. & P. Syd.) M. Ebinghaus & Dianese (Pucciniaceae, Basidiomycota) (Ebinghaus et al. 2022), characterized by the production of pseudosuprastomatal uredinia. Uredinospores light-brown and globose, echinulate (1 µm height), reddish to light brown, 24 - 31 µm diameter, with thick walls, 1.5 - 2.5 µm height (n=15). Teliospores 2-celled, light-yellow and ellipsoidal, 23 - 28 × 19 - 24 µm (n =15) were observed in sori appearing as dark-brown leaf spots on the adaxial side of the leaves (e-Xtra Fig. 1). Molecular characterization of the fungal pathogen was based on the small subunit (SSU), internal transcribed spacer (ITS), and large subunit (LSU) of the ribosomal RNA genes (Aime 2006) with the addition of a LSU internal primer specific for the rust species Ppaullula_int-forward 5'ATAGTTATTGGCTTTGATTTACA-3' designed in this study to increase the quality and the sequence read length due to a 3'- ~21-Ts-homopolymer (e-Xtra Fig. 2) (GenBank accession number ON887196, ON887197, OQ275200, OQ275201). In addition to morphological identification, the host plant was identified using the Ribulose-1,5-bisphosphate carboxylase-oxygenase (rbcL) and Maturase K (matK) genes (Fazekas et al. 2012) (GenBank accession numbers ON887189, ON887193, respectively). MegaBlast searches confirmed the morphological identification with 100% identity to M. deliciosa vouchers GQ436772 and MK206496, respectively (Chen et al. 2015). Dried specimens were deposited in the Plant Industry Herbarium Gainesville (PIHG 16226, 16227, 17154, 17155). Molecular identification of the rust pathogen P. paullula was carried out through megaBlast (Chen et al. 2015) searches together with a phylogenetic analysis performed in RAxML v8 (Stamatakis 2014) (e-Xtra Fig. 3). Koch's postulates were performed by using urediniospores, collected from an infected sample and were kept for 7 days at 4 C, as an inoculum source. Healthy rooted M. deliciosa plants were inoculated by rubbing the inoculum on both leaf surfaces at >90% RH, room temperature, 12/12 light cycle. After the incubation period (48 h), plants were placed in a climate-controlled greenhouse and watered twice a week, ~30 C, ~65 RH, 12/12 light cycle. After three weeks, all inoculated plants developed symptoms resembling those observed on the samples submitted for disease diagnosis. Controls did not show symptoms. Spores from the pustules of inoculated plants were identified as P. paullula by both morphology and molecular means. The genus Pseudocerradoa comprises P. paullula and its sister species P. rhaphidophorae (Syd.) M. Ebinghaus & Dianese. Both species can be distinguished by size and coloration of urediniospores and their host range within the Araceae. Pseudocerradoa rhaphidophorae produces smaller urediniospores and only occurs on Rhaphidophora species (Shaw 1995). Pseudocerradoa paullula is not considered fully established in Florida, since the host distribution is mainly restricted to indoors and M. deliciosa is rarely used as an outdoor ornamental (Wunderlin et al. 2023). Here we name the disease caused by P. paullula as "aroid leaf rust", due to its ability to infect several species in this plant family. Other closely related hosts reported as susceptible to this pathogen are Monstera standleyana G.S.Bunting (as M.s. cv. variegata), Monstera adansonii var. laniata (Schott) Mayo & I.M. Andrade, Monstera subpinnata (Schott) Engl., Typhonodorum lindleyanum Schott, and Stenospermation sp. (Shaw 1991, 1992, 1995). To date, the aroid leaf rust was only known from Australia, China, Japan, Malaysia, and Philippines (Lee et al. 2012; Shaw 1991). Based on our review, P. paullulla was intercepted once from Malaysia in 2014 at the port of Los Angeles, USA (BPI voucher 893085). This present study reports the establishment of P. paullula in Florida, USA infecting M. deliciosa.
  16. Khoo YW, Khaw YS, Tan HT, Li SF, Chong KP
    Plant Dis, 2022 May 17.
    PMID: 35581916 DOI: 10.1094/PDIS-11-21-2478-PDN
    Pometia pinnata (family Sapindaceae), locally known as 'Kasai', is a tropical hardwood and fruit tree species grown in Malaysia. The decoction of the bark is used for the treatment of fever, sores and colds, while the fruits are edible (Adema et al. 1996). In May 2021, irregular brown spots and necrotic lesions were observed on 'Kasai' with an incidence and severity of approximately 60% and 10% on 10 plants in a nursery (5°55'30.7"N 116°04'36.2"E) in Penampang, Sabah province. When the disease progressed, the spots coalesced into extended patches, blightening the leaves and, gradually, the entire foliage. Small pieces (5 x 5 mm) of infected leaves were excised from the infected margin, and then surface sterilized according to Khoo et al. (2022b), and plated on potato dextrose agar (PDA), and cultured at 25 °C. for 6 days. Colonies were dark brown in color initially whitish on the PDA. The color of fungal colony was dark as the culture aged. Semi-appressed mycelia were observed on the plates with abundant microsclerotia engrossed in the agar. Aggregation of hyphae formed black and round to oblong or irregular shaped microsclerotia. Thirty sclerotia from a representative isolate measured average 63-171 μM length x 57-128 μM wide. The morphological features matched the description of Macrophomina phaseolina (Abd Rahim et al. 2019). The fungal genomic DNA was extracted based on Khoo et al. (2022a and 2022b). PCR was performed using primer sets ITS1/ITS4 (White et al. 1990), EF1-728/EF2 (O'Donnell et al. 1998; Carbone and Kohn, 1999) and T1/T22 (O'Donnell and Cigelnik 1997) to amplify the internal transcribed spacer (ITS) region of rDNA, translation elongation factor 1-α (TEF-1α) region and partial β-tubulin (TUB) gene. PCR products with positive amplicons were sent to Apical Scientific Sdn. Bhd. in Malaysia for sequencing. According to results (GenBank Accession No. OK465197, OM677767, ON237461), they were 100% identical with the reference sequence of Macrophomina phaseolina containing approximately 537 bp, 438 bp and 659 bp of the presented ITS, TEF-1α and TUB region (GenBank Accession No. MN629245, MN136199 and KF952208, respectively). The pathogen was identified as M. phaseolina based on its morphological and molecular data (Abd Rahim et al. 2019). To confirm the pathogenicity test, three non-wounded and healthy leaves of one-month-old 'Kasai' seedlings were inoculated with mycelium plug (1 x 1 cm) of M. phaseolina. Additional three 'Kasai' seedlings were inoculated with sterile PDA agar plug (1 x 1 cm) to serve as controls. The seedlings were monitored and incubated in a greenhouse at ambient temperature based on Iftikhar et al. (2022). After 6 days of inoculation, all infected leaves exhibited the symptoms as observed in the nursery, while the controls remained asymptomatic. The experiment was repeated twice. Re-isolation was performed from the symptomatic leaves and controls. The reisolated fungal isolates were identical to M. phaseolina morphologically and molecularly. No pathogens were isolated from the mock controls. M. phaseolina has been reported to cause leaf blight on Jasminium multiflorum in India (Mahadevakumar and Janardhana, 2016), and Crinum asiaticum and Hymenocallis littoralis in Malaysia (Abd Rahim et al. 2019). To our knowledge, this is the first report of M. phaseolina causing leaf blight on 'Kasai' in Malaysia and worldwide. Our findings serve as a warning for the authorities and farmers that the disease threat has appeared for 'Kasai' in Malaysia.
  17. Velez-Negron YI, Simbaña-Carrera LL, Soto-Ramos CM, Medina O, Dinkel E, Hardy C, et al.
    Plant Dis, 2022 May 10.
    PMID: 35536215 DOI: 10.1094/PDIS-01-22-0174-PDN
    In Puerto Rico, the agricultural production of pineapple (Ananas comosus (L.) Merr.) comprises nearly 5,000 tons harvested annually from over 250 ha (USDA 2018). With an annual income of approximately $3 million USD, pineapple ranks fourth in importance among Puerto Rican crops (USDA 2018). Recently, the pineapple industry on the island underwent a change from growing a local cultivar known as "Cabezona" to cultivar MD2, introduced from Hawaii around 1996 (SEA 2015), because this cultivar produces fruit more than once during a single growing season. In August 2018 (when the rainy season normally starts in Puerto Rico), soft rot symptoms appeared at commercial fields in Manatí (WGS 84 Lat 18.42694, Lng -66.44779) and persisted through 2019. Symptoms observed in the field included foliar water-soaked lesions with gas-filled blisters, especially at the base of the leaf. Leaves exhibited brown discoloration and a fetid odor (rot) at the basal portion of the plant. Finally, leaves collapsed at the center of the pineapple crown, effectively killing the apex and preventing the fruit from developing. Disease incidence ranged from 25% to 40% depending on the weather and season; when there was more rain, there was higher disease incidence. Symptomatic leaves were collected in February 2019, disinfected with 70% ethanol, and rinsed with sterile distilled water. Tissue sections (5mm2) were placed in nutrient agar. Bacterial colony-forming units (CFU) were a translucent cream color, circular, with a flat convex surface and wavy edge. Biochemical analysis showed that bacteria were Gram-negative, oxidase positive, catalase positive, and facultatively anaerobic. Pathogenicity was tested on leaves of one-and-a-half-year-old pineapple seedlings in humid chambers. Bacteria were grown on sterile nutrient agar for 3 days at 25 ± 2°C. Inoculation assays (three replications) were performed using 1X108 CFU/ml of bacteria suspended in sterile water and applied with a cotton swab to leaves wounded with a needle. The inoculated tissue was incubated at 28°C and kept in a dark environment. Negative controls were inoculated with sterile water. Five days after inoculation, foliar water-soaked lesions were observed, followed by the formation of brown leaf tissue and gas-filled blisters, the same symptoms observed in the field. A partial DNA sequence of the 16S rRNA gene of the bacterial isolate and the re-isolated bacteria were amplified using primers 27F and 1492R (Lane et al. 1985) and sequenced. The isolate was determined to the genus Dickeya through a BLAST® search against sequences available in the database of the National Center for Biotechnology Information (NCBI). This partial 16S rRNA sequence of the bacterial isolate was deposited in GenBank® at NCBI (Accession no. MT672704). To determine the identity of the Dickeya species, we sequenced the genes dnaA, gyrB, dnaX, and recN (Marrero et al. 2013) for the bacterial isolate (GenBank accession nos. OM276852, OM276853, OM276854, and OM276855) and conducted a Multilocus Sequence Analysis including reference Dickeya sequences of Marrero et al., 2013. The Phylogenetic analysis (using WinClada) resolved the Puerto Rican isolate as belonging to a clade broadly ascribable to D. zeae, most closely related to strains isolated from earlier Hawaiian pineapple bacterial heart rot outbreaks. Dickeya zeae was responsible for bacterial heart rot of pineapple in Malaysia and was later reported as the causal agent for outbreaks in Costa Rica and Hawaii (Kaneshiro et al. 2008; Sueno et al. 2014; Ramachandran et al. 2015). D. zeae had not previously been reported as causing bacterial heart rot in pineapples in Puerto Rico and this study points to a close relationship with strains first detected in Hawaii and which should further be explored to determine the precise nature of this relationship. This information should facilitate the adoption of effective control measures for this disease on the island, promote more effective methods of preventing future introductions of pathogens, and encourage further investigations into the occurrence of D. zeae on the island.
  18. Khoo YW, Tan HT, Khaw YS, Li SF, Chong KP
    Plant Dis, 2022 May 31.
    PMID: 35640953 DOI: 10.1094/PDIS-03-22-0566-PDN
    Selenicereus megalanthus (family Cactaceae), commonly known as yellow pitahaya is a new crop being planted commercially in Malaysia. In May 2021, stem canker symptoms with sign of black pycnidia formed on the surface of canker (30- to 55-mm in diameter) were observed on the stem of 80% of 'yellow pitahaya' plants in the field (~8 ha) located in the district Keningau of Sabah, Malaysia (5°20'53.1"N 116°06'23.0"E). The infected stems became rotted when black pycnidia formed. To isolate the pathogen, the symptom margin was excised into four small blocks (5 x 5 x 5 mm), and the blocks were surface sterilized based on Khoo et al. (2022) before plating on potato dextrose agar (PDA). Plates were incubated at 25°C for 7 days in the dark. Two isolates were obtained and were named Keningau and Keningau02. Powdery white mycelia were initially observed in two plates, and then became dark grey with age. Dark pigmentation in plates was observed after a week of incubation at 25°C in the dark. Arthroconidia (n= 30) were hyaline to dark brown, circular or cylindrical with round to truncate ends, with zero to one septum, measuring 8.9 x 5.6 µm in size. Conidia (n= 30) exuded in milky white cirrhus from pycnidia were one-celled, aseptate, oblong, measuring 10.3 × 4.6 µm in size. When reached the maturity stage, conidia were brown and septate. Genomic DNA from Keningau and Keningau02 were extracted from fresh mycelia based on Khoo et al. (2021) and Khoo et al. (2022). Amplification of the internal transcribed spacer (ITS) region of rDNA, translation elongation factor 1-α (TEF1) region and β-tubulin (TUB) genes were performed using ITS1/ITS4, EF1-728F/EF1-986R and T10/Bt2b primer sets, respectively (Carbone and Kohn, 1999; O'Donnell et al. 1997; White et al. 1990). The products were sent to Apical Scientific Sdn. Bhd. for sequencing. BLASTn analysis of the newly generated ITS (GenBank OK458559, OM649909), TEF1 (GenBank OM677768, OM677769) and TUB (GenBank OL697398, OM677766) indicated 99% identity to Neoscytalidium novaehollandiae strain CBS 122071 (GenBank MT592760). Phylogenetic analysis using maximum likelihood and Bayesian inference on the concatenated ITS-TEF1-TUB was constructed using IQ-Tree and MrBayes3.2.7. Neoscytalidium hyalinum, N. novaehollandiae and Neoscytalidium orchidacearum are reduced to synonymy with N. dimidiatum (Philips et al. 2013; Zhang et al. 2021). Although N. novaehollandiae is morphologically and phylogenetically similar to N. dimidiatum, but N. novaehollandiae produce muriform, Dichomera-like conidia that distinguish this species from other known Neoscytalidium species (Crous et al. 2006). No muriform, Dichomera-like conidia were observed in the Malaysia' isolates. The pathogen was identified as N. dimidiatum based on molecular data and morphological characterization (Serrato-Diaz and Goenaga, 2021). Pathogenicity tests were performed based on Mohd et al. (2013) by injection inoculation of 0.2 ml of conidial suspensions (1 x 106 conidia/ml) from isolate Keningau to three 30-month-old yellow pitahaya stems using a disposable needle and syringe. Distilled water was injected into three mock controls. The inoculated yellow pitahaya plants were covered with plastics for 48 h and incubated at 25°C. The pathogenicity test was also performed using isolate Keningau02. All inoculated stems developed symptoms as described after 6 days post-inoculation, whereas no symptoms occurred on controls, thus fulfilling Koch's postulates. The experiments were repeated two more times. The reisolated fungi were identical to the pathogen morphologically and molecularly. To our knowledge, this is the first report of N. dimidiatum causing stem canker on S. megalanthus in Malaysia. Our findings serve as a warning for the authorities and farmers that the disease threat has appeared in the Malaysian yellow pitahaya production.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links