Affiliations 

  • 1 Chinese Academy of Agricultural Sciences, 12661, Institute of Plant Protection, No. 2 West Yuanmingyuan Rd.,, Haidian District, Beijing, China, 100193
  • 2 Universiti Putra Malaysia Institute of Bioscience, 534340, AQUAHEALTH LAB, Aquahealth, Institut Biosains, UPM, 43400 Serdang, Selangor, TRIANG, Selangor, Malaysia, 28300
  • 3 Universiti Putra Malaysia, 37449, Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Jalan Universiti 1, Serdang, Malaysia, Malaysia, 43400; yskhaw@gmail.com
  • 4 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan west No2,Haidian District, Beijing, China, 100094; sfli@ippcaas.cn
  • 5 Universiti Malaysia Sabah, 60606, Faculty of Science and Natural Resources, Jalan UMS, Kota Kinabalu, Sabah, Malaysia, 88400; chongkp@ums.edu.my
Plant Dis, 2022 May 31.
PMID: 35640953 DOI: 10.1094/PDIS-03-22-0566-PDN

Abstract

Selenicereus megalanthus (family Cactaceae), commonly known as yellow pitahaya is a new crop being planted commercially in Malaysia. In May 2021, stem canker symptoms with sign of black pycnidia formed on the surface of canker (30- to 55-mm in diameter) were observed on the stem of 80% of 'yellow pitahaya' plants in the field (~8 ha) located in the district Keningau of Sabah, Malaysia (5°20'53.1"N 116°06'23.0"E). The infected stems became rotted when black pycnidia formed. To isolate the pathogen, the symptom margin was excised into four small blocks (5 x 5 x 5 mm), and the blocks were surface sterilized based on Khoo et al. (2022) before plating on potato dextrose agar (PDA). Plates were incubated at 25°C for 7 days in the dark. Two isolates were obtained and were named Keningau and Keningau02. Powdery white mycelia were initially observed in two plates, and then became dark grey with age. Dark pigmentation in plates was observed after a week of incubation at 25°C in the dark. Arthroconidia (n= 30) were hyaline to dark brown, circular or cylindrical with round to truncate ends, with zero to one septum, measuring 8.9 x 5.6 µm in size. Conidia (n= 30) exuded in milky white cirrhus from pycnidia were one-celled, aseptate, oblong, measuring 10.3 × 4.6 µm in size. When reached the maturity stage, conidia were brown and septate. Genomic DNA from Keningau and Keningau02 were extracted from fresh mycelia based on Khoo et al. (2021) and Khoo et al. (2022). Amplification of the internal transcribed spacer (ITS) region of rDNA, translation elongation factor 1-α (TEF1) region and β-tubulin (TUB) genes were performed using ITS1/ITS4, EF1-728F/EF1-986R and T10/Bt2b primer sets, respectively (Carbone and Kohn, 1999; O'Donnell et al. 1997; White et al. 1990). The products were sent to Apical Scientific Sdn. Bhd. for sequencing. BLASTn analysis of the newly generated ITS (GenBank OK458559, OM649909), TEF1 (GenBank OM677768, OM677769) and TUB (GenBank OL697398, OM677766) indicated 99% identity to Neoscytalidium novaehollandiae strain CBS 122071 (GenBank MT592760). Phylogenetic analysis using maximum likelihood and Bayesian inference on the concatenated ITS-TEF1-TUB was constructed using IQ-Tree and MrBayes3.2.7. Neoscytalidium hyalinum, N. novaehollandiae and Neoscytalidium orchidacearum are reduced to synonymy with N. dimidiatum (Philips et al. 2013; Zhang et al. 2021). Although N. novaehollandiae is morphologically and phylogenetically similar to N. dimidiatum, but N. novaehollandiae produce muriform, Dichomera-like conidia that distinguish this species from other known Neoscytalidium species (Crous et al. 2006). No muriform, Dichomera-like conidia were observed in the Malaysia' isolates. The pathogen was identified as N. dimidiatum based on molecular data and morphological characterization (Serrato-Diaz and Goenaga, 2021). Pathogenicity tests were performed based on Mohd et al. (2013) by injection inoculation of 0.2 ml of conidial suspensions (1 x 106 conidia/ml) from isolate Keningau to three 30-month-old yellow pitahaya stems using a disposable needle and syringe. Distilled water was injected into three mock controls. The inoculated yellow pitahaya plants were covered with plastics for 48 h and incubated at 25°C. The pathogenicity test was also performed using isolate Keningau02. All inoculated stems developed symptoms as described after 6 days post-inoculation, whereas no symptoms occurred on controls, thus fulfilling Koch's postulates. The experiments were repeated two more times. The reisolated fungi were identical to the pathogen morphologically and molecularly. To our knowledge, this is the first report of N. dimidiatum causing stem canker on S. megalanthus in Malaysia. Our findings serve as a warning for the authorities and farmers that the disease threat has appeared in the Malaysian yellow pitahaya production.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.