Affiliations 

  • 1 Chinese Academy of Agricultural Sciences, 12661, Institute of Plant Protection, No. 2 West Yuanmingyuan Rd.,, Haidian District, Beijing, China, 100193
  • 2 Universiti Putra Malaysia Institute of Bioscience, 534340, AQUAHEALTH LAB, Aquahealth, Institut Biosains, UPM, 43400 Serdang, Selangor, TRIANG, Selangor, Malaysia, 28300
  • 3 Universiti Putra Malaysia, 37449, Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Jalan Universiti 1, Serdang, Malaysia, Malaysia, 43400; yskhaw@gmail.com
  • 4 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan west No2,Haidian District, Beijing, China, 100094; sfli@ippcaas.cn
  • 5 Universiti Malaysia Sabah, 60606, Faculty of Science and Natural Resources, Jalan UMS, Kota Kinabalu, Sabah, Malaysia, 88400; chongkp@ums.edu.my
Plant Dis, 2022 Mar 22.
PMID: 35316084 DOI: 10.1094/PDIS-02-22-0277-PDN

Abstract

Ixora chinensis (family Rubiaceae), locally known as 'Bunga Jejarum', is widely grown as an ornamental shrub and as sources for phytochemicals with medicinal properties in Malaysia. In May 2021, irregular brown spots were found on the leaves of some 'Bunga Jejarum' in Universiti Malaysia Sabah (6°02'01.0"N 116°07'20.2"E) located in Sabah province. As the disease progressed, the spots enlarged and coalesced into large necrotic areas giving rise to drying of infected leaves. The disease severity was about 70% with 20% incidence. Five symptomatic leaves (5 x 5 mm) from five plants were excised and sterilized based on Khoo et al. (2022) before plated on five potato dextrose agar (PDA) and cultured at 25°C. After 5 days, white to pale honey and dense mycelia with lobate edge were observed on all PDA plates. Globose, black conidiomata semi-immersed on PDA were observed after a week. Two to four hyaline filamentous appendages 7.7 to 17.6 μm long attached to fusoid conidia (11.8 to 20.9 x 5.7 to 7.6 μm, n = 20), which consisted of a hyaline apical cell, basal cell, and three versicolored median cells. The upper two median cells were dark brown, while the lowest median cell was pale brown. The isolate of the causal pathogen was characterized molecularly. Genomic DNA of isolate UMS01 was extracted based on Khoo et al. (2021) and Khoo et al. (2022). Amplification of the internal transcribed spacer (ITS), tubulin (TUB) and translation elongation factor 1-α (TEF) region was performed based on Khoo et al. (2022) using primers ITS1/ITS4 (White et al. 1990), T1/Bt2b (Glass and Donaldson, 1995; O'Donnell and Cigelnik, 1997) and EF1-728/EF2 (O'Donnell et al. 1998; Carbone and Kohn, 1999), respectively. PCR products with positive amplicons were sent to Apical Scientific Sdn. Bhd. for sequencing. The isolate's sequences were deposited in GenBank as OM320626 (ITS), OM339539 (TUB) and OM339540 (TEF). They were 99% to 100% identical to ITS(KM199347) (545 out of 545 bp), TUB (KM199438) (768 out of 769 bp) and TEF (KM199521) (480 out of 481 bp) of the type sequences (CBS 600.96). Phylogenetic analysis using the maximum likelihood method based on the combined ITS, TEF and TUB sequences placed the isolate UMS01 in the same clade as the isolate CBS 600.96 of Neopestalotiopsis cubana. Thus, the pathogen was identified as N. cubanabased on the morphological description from Pornsuriya et al. (2020), molecular data in Genbank database and multigene sequence analysis. To further confirm its pathogenicity, the first and second leaves of three 'Bunga Jejarum' plants were inoculated by pipetting 1 ml aliquots of a 1 × 106 conidia/ml spore suspension. Three additional 'Bunga Jejarum' plants were mock inoculated by pipetting 1 ml of sterile distilled water on similar age leaves. The plants were covered with plastic bags after inoculation for 48 h before placing them in a glasshouse under room temperature. The leaves were sprayed with water to keep the leaf surfaces moist along the experiment. The incubation and disease observation were performed based on Chai et al. (2017) and Iftikhar et al. (2022). After 7 days post-inoculation, all infected leaves exhibited the symptoms observed in the field, whereas the controls showed no symptoms. The same fungus was isolated from the diseased leaves and, thus confirmed Koch's postulates. The experiment was repeated two more times. The reisolated fungi were visually and genetically identical to the original isolate obtained from the field samples. To our knowledge, this is the first report of N. cubana causing leaf blight on 'Bunga Jejarum' in Malaysia, as well as the world. Our finding has broadened the distribution and host range of N. cubana, indicating that it poses potential damage to the medicinal plant Bunga Jejarum in Malaysia.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.