Displaying publications 101 - 120 of 736 in total

Abstract:
Sort:
  1. Firoozi AA, Taha MR, Mir Moammad Hosseini SM, Firoozi AA
    ScientificWorldJournal, 2014;2014:325759.
    PMID: 25126595 DOI: 10.1155/2014/325759
    Deformation of quay walls is one of the main sources of damage to port facility while liquefaction of backfill and base soil of the wall are the main reasons for failures of quay walls. During earthquakes, the most susceptible materials for liquefaction in seashore regions are loose saturated sand. In this study, effects of enhancing the wall width and the soil improvement on the behavior of gravity quay walls are examined in order to obtain the optimum improved region. The FLAC 2D software was used for analyzing and modeling progressed models of soil and loading under difference conditions. Also, the behavior of liquefiable soil is simulated by the use of "Finn" constitutive model in the analysis models. The "Finn" constitutive model is especially created to determine liquefaction phenomena and excess pore pressure generation.
    Matched MeSH terms: Models, Theoretical*
  2. Zaman MR, Islam MT, Misran N, Yatim B
    ScientificWorldJournal, 2014;2014:831435.
    PMID: 24977230 DOI: 10.1155/2014/831435
    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than -20 dB for C band and -34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior.
    Matched MeSH terms: Models, Theoretical*
  3. Islam NN, Hannan MA, Shareef H, Mohamed A, Salam MA
    ScientificWorldJournal, 2014;2014:549094.
    PMID: 24977210 DOI: 10.1155/2014/549094
    Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.
    Matched MeSH terms: Models, Theoretical*
  4. Aldhaibani JA, Yahya A, Ahmad RB
    ScientificWorldJournal, 2014;2014:815720.
    PMID: 24672378 DOI: 10.1155/2014/815720
    The poor capacity at cell boundaries is not enough to meet the growing demand and stringent design which required high capacity and throughput irrespective of user's location in the cellular network. In this paper, we propose new schemes for an optimum fixed relay node (RN) placement in LTE-A cellular network to enhance throughput and coverage extension at cell edge region. The proposed approach mitigates interferences between all nodes and ensures optimum utilization with the optimization of transmitted power. Moreover, we proposed a new algorithm to balance the transmitted power of moving relay node (MR) over cell size and providing required SNR and throughput at the users inside vehicle along with reducing the transmitted power consumption by MR. The numerical analysis along with the simulation results indicates that an improvement in capacity for users is 40% increment at downlink transmission from cell capacity. Furthermore, the results revealed that there is saving nearly 75% from transmitted power in MR after using proposed balancing algorithm. ATDI simulator was used to verify the numerical results, which deals with real digital cartographic and standard formats for terrain.
    Matched MeSH terms: Models, Theoretical
  5. Samrat NH, Bin Ahmad N, Choudhury IA, Bin Taha Z
    ScientificWorldJournal, 2014;2014:436376.
    PMID: 24892049 DOI: 10.1155/2014/436376
    Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.
    Matched MeSH terms: Models, Theoretical*
  6. Shabri A, Samsudin R
    ScientificWorldJournal, 2014;2014:854520.
    PMID: 24895666 DOI: 10.1155/2014/854520
    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.
    Matched MeSH terms: Models, Theoretical*
  7. Ahmed AU, Islam MT, Ismail M, Ghanbarisabagh M
    ScientificWorldJournal, 2014;2014:539720.
    PMID: 24782662 DOI: 10.1155/2014/539720
    Intercell interference is one of the most challenging issues in femtocell deployment under the coverage of existing macrocell. Allocation of resources between femtocell and macrocell is essential to counter the effects of interference in dense femtocell networks. Advances in resource management strategies have improved the control mechanism for interference reduction at lower node density, but most of them are ineffective at higher node density. In this paper, a dynamic resource allocation management algorithm (DRAMA) for spectrum shared hybrid access OFDMA femtocell network is proposed. To reduce the macro-femto-tier interference and to improve the quality of service, the proposed algorithm features a dynamic resource allocation scheme by controlling them both centrally and locally. The proposed scheme focuses on Femtocell Access Point (FAP) owners' satisfaction and allows maximum utilization of available resources based on congestion in the network. A simulation environment is developed to study the quantitative performance of DRAMA in hybrid access-control femtocell network and compare it to closed and open access mechanisms. The performance analysis shows that higher number of random users gets connected to the FAP without compromising FAP owners' satisfaction allowing the macrocell to offload a large number of users in a dense heterogeneous network.
    Matched MeSH terms: Models, Theoretical*
  8. Mahyuddin NM, Russell G
    ScientificWorldJournal, 2014;2014:876435.
    PMID: 24782671 DOI: 10.1155/2014/876435
    Technology scaling relies on reduced nodal capacitances and lower voltages in order to improve performance and power consumption, resulting in significant increase in layout density, thus making these submicron technologies more susceptible to soft errors. Previous analysis indicates a significant improvement in SEU tolerance of the driver when the bias current is injected into the circuit but results in increase of power dissipation. Subsequently, other alternatives are considered. The impact of transistor sizes and temperature on SEU tolerance is tested. Results indicate no significant changes in Q(crit) when the effective transistor length is increased by 10%, but there is an improvement when high temperature and high bias currents are applied. However, this is due to other process parameters that are temperature dependent, which contribute to the sharp increase in Q(crit). It is found that, with temperature, there is no clear factor that can justify the direct impact of temperature on the SEU tolerance. Thus, in order to improve the SEU tolerance, high bias currents are still considered to be the most effective method in improving the SEU sensitivity. However, good trade-off is required for the low-swing driver in order to meet the reliability target with minimal power overhead.
    Matched MeSH terms: Models, Theoretical*
  9. Javedani Sadaei H, Lee MH
    ScientificWorldJournal, 2014;2014:610594.
    PMID: 24605058 DOI: 10.1155/2014/610594
    After reviewing the vast body of literature on using FTS in stock market forecasting, certain deficiencies are distinguished in the hybridization of findings. In addition, the lack of constructive systematic framework, which can be helpful to indicate direction of growth in entire FTS forecasting systems, is outstanding. In this study, we propose a multilayer model for stock market forecasting including five logical significant layers. Every single layer has its detailed concern to assist forecast development by reconciling certain problems exclusively. To verify the model, a set of huge data containing Taiwan Stock Index (TAIEX), National Association of Securities Dealers Automated Quotations (NASDAQ), Dow Jones Industrial Average (DJI), and S&P 500 have been chosen as experimental datasets. The results indicate that the proposed methodology has the potential to be accepted as a framework for model development in stock market forecasts using FTS.
    Matched MeSH terms: Models, Theoretical*
  10. Salman SD, Kadhum AA, Takriff MS, Mohamad AB
    ScientificWorldJournal, 2014;2014:543231.
    PMID: 24605055 DOI: 10.1155/2014/543231
    Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape.
    Matched MeSH terms: Models, Theoretical*
  11. Jawahar N, Ponnambalam SG, Sivakumar K, Thangadurai V
    ScientificWorldJournal, 2014;2014:458959.
    PMID: 24790568 DOI: 10.1155/2014/458959
    Products such as cars, trucks, and heavy machinery are assembled by two-sided assembly line. Assembly line balancing has significant impacts on the performance and productivity of flow line manufacturing systems and is an active research area for several decades. This paper addresses the line balancing problem of a two-sided assembly line in which the tasks are to be assigned at L side or R side or any one side (addressed as E). Two objectives, minimum number of workstations and minimum unbalance time among workstations, have been considered for balancing the assembly line. There are two approaches to solve multiobjective optimization problem: first approach combines all the objectives into a single composite function or moves all but one objective to the constraint set; second approach determines the Pareto optimal solution set. This paper proposes two heuristics to evolve optimal Pareto front for the TALBP under consideration: Enumerative Heuristic Algorithm (EHA) to handle problems of small and medium size and Simulated Annealing Algorithm (SAA) for large-sized problems. The proposed approaches are illustrated with example problems and their performances are compared with a set of test problems.
    Matched MeSH terms: Models, Theoretical
  12. Valizadeh N, El-Shafie A, Mirzaei M, Galavi H, Mukhlisin M, Jaafar O
    ScientificWorldJournal, 2014;2014:432976.
    PMID: 24790567 DOI: 10.1155/2014/432976
    Water level forecasting is an essential topic in water management affecting reservoir operations and decision making. Recently, modern methods utilizing artificial intelligence, fuzzy logic, and combinations of these techniques have been used in hydrological applications because of their considerable ability to map an input-output pattern without requiring prior knowledge of the criteria influencing the forecasting procedure. The artificial neurofuzzy interface system (ANFIS) is one of the most accurate models used in water resource management. Because the membership functions (MFs) possess the characteristics of smoothness and mathematical components, each set of input data is able to yield the best result using a certain type of MF in the ANFIS models. The objective of this study is to define the different ANFIS model by applying different types of MFs for each type of input to forecast the water level in two case studies, the Klang Gates Dam and Rantau Panjang station on the Johor river in Malaysia, to compare the traditional ANFIS model with the new introduced one in two different situations, reservoir and stream, showing the new approach outweigh rather than the traditional one in both case studies. This objective is accomplished by evaluating the model fitness and performance in daily forecasting.
    Matched MeSH terms: Models, Theoretical*
  13. Rahman S, Akib S, Khan MT, Shirazi SM
    ScientificWorldJournal, 2014;2014:729357.
    PMID: 24790578 DOI: 10.1155/2014/729357
    This experimental study was conducted to idealize the efficacy of sea wall in controlling the tsunami forces on onshore structures. Different types of sea walls were placed in front of the building model. The tsunami forces and the wave heights were measured with and without the sea wall conditions. Types of sea wall, wall height, and wall positions were varied simultaneously to quantify the force reductions. Maximum of 41% forces was reduced by higher sea wall, positioned closer proximity to the model whereas this reduction was about 27% when the wall height was half of the high wall. Experimental investigations revealed that wall with adequate height and placed closer to the structures enables a satisfactory predictor of the force reduction on onshore structures. Another set of tests were performed with perforated wall placing near the building model. Less construction cost makes the provision of perforated sea wall interesting. The overall results showed that the efficacy of perforated wall is almost similar to solid wall. Hence, it can be efficiently used instead of solid wall. Moreover, overtopped water that is stuck behind the wall is readily gone back to the sea through perforations releasing additional forces on the nearby structures.
    Matched MeSH terms: Models, Theoretical
  14. Shaddad RQ, Mohammad AB, Al-Gailani SA, Al-Hetar AM
    ScientificWorldJournal, 2014;2014:170471.
    PMID: 24772009 DOI: 10.1155/2014/170471
    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.
    Matched MeSH terms: Models, Theoretical
  15. Chiu Chuen O, Karim MR, Yusoff S
    ScientificWorldJournal, 2014;2014:394587.
    PMID: 24701165 DOI: 10.1155/2014/394587
    In 2010, Klang Valley has only 17% trips each day were completed using public transport, with the rest of the 83% trips were made through private transport. The inclination towards private car usage will only get worse if the transport policy continues to be inefficient and ineffective. Under the National Key Economic Area, the priority aimed to stimulate the increase of modal share of public transport in the Klang Valley to 50% by 2020. In the 10th Malaysia Plan, the Klang Valley Mass Rapid Transit was proposed, equipped with 141 km of MRT system, and will integrate with the existing rail networks. Nevertheless, adding kilometers into the rail system will not help, if people do not make the shift from private into public transport. This research would like to assess the possible mode shift of travellers in the Klang Valley towards using public transport, based on the utility function of available transport modes. It intends to identify the criteria that will trigger their willingness to make changes in favour of public transport as targeted by the NKEA.
    Matched MeSH terms: Models, Theoretical
  16. Jahanshahi P, Ghomeishi M, Adikan FR
    ScientificWorldJournal, 2014;2014:503749.
    PMID: 24616635 DOI: 10.1155/2014/503749
    The most common permittivity function models are compared and identifying the best model for further studies is desired. For this study, simulations using several different models and an analytical analysis on a practical surface Plasmon structure were done with an accuracy of ∼ 94.4% with respect to experimental data. Finite element method, combined with dielectric properties extracted from the Brendel-Bormann function model, was utilized, the latter being chosen from a comparative study on four available models.
    Matched MeSH terms: Models, Theoretical*
  17. Othman N, Kamarudin SK
    ScientificWorldJournal, 2014;2014:768604.
    PMID: 24616642 DOI: 10.1155/2014/768604
    Many problems associated with the mixing process remain unsolved and result in poor mixing performance. The residence time distribution (RTD) and the mixing time are the most important parameters that determine the homogenisation that is achieved in the mixing vessel and are discussed in detail in this paper. In addition, this paper reviews the current problems associated with conventional tracers, mathematical models, and computational fluid dynamics simulations involved in radiotracer experiments and hybrid of radiotracer.
    Matched MeSH terms: Models, Theoretical*
  18. Khari M, Kassim KA, Adnan A
    ScientificWorldJournal, 2014;2014:917174.
    PMID: 24574932 DOI: 10.1155/2014/917174
    The research on damages of structures that are supported by deep foundations has been quite intensive in the past decade. Kinematic interaction in soil-pile interaction is evaluated based on the p-y curve approach. Existing p-y curves have considered the effects of relative density on soil-pile interaction in sandy soil. The roughness influence of the surface wall pile on p-y curves has not been emphasized sufficiently. The presented study was performed to develop a series of p-y curves for single piles through comprehensive experimental investigations. Modification factors were studied, namely, the effects of relative density and roughness of the wall surface of pile. The model tests were subjected to lateral load in Johor Bahru sand. The new p-y curves were evaluated based on the experimental data and were compared to the existing p-y curves. The soil-pile reaction for various relative density (from 30% to 75%) was increased in the range of 40-95% for a smooth pile at a small displacement and 90% at a large displacement. For rough pile, the ratio of dense to loose relative density soil-pile reaction was from 2.0 to 3.0 at a small to large displacement. Direct comparison of the developed p-y curve shows significant differences in the magnitude and shapes with the existing load-transfer curves. Good comparison with the experimental and design studies demonstrates the multidisciplinary applications of the present method.
    Matched MeSH terms: Models, Theoretical*
  19. Saif AF, Prabuwono AS, Mahayuddin ZR
    ScientificWorldJournal, 2014;2014:890619.
    PMID: 24892103 DOI: 10.1155/2014/890619
    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.
    Matched MeSH terms: Models, Theoretical*
  20. Omran QK, Islam MT, Misran N, Faruque MR
    ScientificWorldJournal, 2014;2014:812576.
    PMID: 24892092 DOI: 10.1155/2014/812576
    In this paper, a novel design approach for a phase to sinusoid amplitude converter (PSAC) has been investigated. Two segments have been used to approximate the first sine quadrant. A first linear segment is used to fit the region near the zero point, while a second fourth-order parabolic segment is used to approximate the rest of the sine curve. The phase sample, where the polynomial changed, was chosen in such a way as to achieve the maximum spurious free dynamic range (SFDR). The invented direct digital frequency synthesizer (DDFS) has been encoded in VHDL and post simulation was carried out. The synthesized architecture exhibits a promising result of 90 dBc SFDR. The targeted structure is expected to show advantages for perceptible reduction of hardware resources and power consumption as well as high clock speeds.
    Matched MeSH terms: Models, Theoretical*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links