Displaying publications 101 - 109 of 109 in total

Abstract:
Sort:
  1. Siak PY, Wong KY, Song AA, Rahim RA, In LLA
    Vaccines (Basel), 2021 Feb 26;9(3).
    PMID: 33652552 DOI: 10.3390/vaccines9030195
    KRAS G12A somatic point mutation in adenocarcinomas is categorized clinically as ineligibility criteria for anti-epidermal growth factor receptor (EGFR) monoclonal antibody therapies. In this study, a modified G12A-K-ras epitope (139A) with sequence-specific modifications to improve immunogenicity was developed as a potential vaccine against G12A-mutant KRAS cancers. Additionally, coupling of the 139A epitope with a tetanus toxoid (TTD) universal T-cell epitope to improve antigenicity was also reported. To facilitate convenient oral administration, Lactococcus lactis, which possesses innate immunomodulatory properties, was chosen as a live gastrointestinal delivery vehicle. Recombinant L. lactis strains secreting a G12A mutated K-ras control and 139A with and without TTD fusion were generated for comparative immunogenicity assessment. BALB/c mice were immunized orally, and high survivability of L. lactis passage through the gastrointestinal tract was observed. Elevations in B-cell count with a concomitant titre of antigen-specific IgG and interferon-γ secreting T-cells were observed in the 139A treated mice group. Interestingly, an even higher antigen-specific IgA response and interferon-γ secreting T-cell counts were observed in 139A-TTD mice group upon re-stimulation with the G12A mutated K-ras antigen. Collectively, these results indicated that an antigen-specific immune response was successfully stimulated by 139A-TTD vaccine, and a TTD fusion was successful in further enhancing the immune responses.
    Matched MeSH terms: Antigens, Bacterial
  2. Suppian R, Zainuddin ZF, Norazmi MN
    Malays J Med Sci, 2006 Jan;13(1):13-20.
    PMID: 22589585
    Mycobacterium bovis bacille Calmette-Guèrin (BCG) represents one of the most promising live vectors for the delivery of foreign antigens to the immune system. A recombinant BCG containing a synthetic gene coding for the malarial epitopes namely, the fragment 2 of region II of EBA-175 (F2R(II)EBA) and the repeat sequence of the circumsporozoite protein NANP generated in favour of mycobacterium codon usage using assembly PCR was constructed. Two T-cell epitopes of the 6-kDa M. tuberculosis early-secreted antigenic target (ESAT-6) antigen were also clone in the same construct. Expression of the synthetic gene was driven by the heat shock protein 65 (hsp65) promoter from M. tuberculosis and the signal peptide from the MPT63 antigen of M. tuberculosis. Expression of the composite epitopes was detected by Western blotting of the cell extract and culture supernatant of the recombinant clones using a specific rabbit polyclonal antibody against F2R(II)EBA. This study demonstrates the possibility of cloning and expressing immunogenic epitopes from causative agents of two important diseases: malaria and tuberculosis (TB) in a single recombinant BCG construct.
    Matched MeSH terms: Antigens, Bacterial
  3. Alfizah H, Ramelah M, Rizal AM, Anwar AS, Isa MR
    Helicobacter, 2012 Oct;17(5):340-9.
    PMID: 22967117 DOI: 10.1111/j.1523-5378.2012.00956.x
    Polymorphisms of Helicobacter pylori cagA and vacA genes do exist and may contribute to differences in H. pylori infection and gastroduodenal diseases among races in the Malaysian population. This study was conducted to characterize the polymorphisms in H. pylori cagA and vacA in Malaysian population.
    Matched MeSH terms: Antigens, Bacterial/genetics
  4. Mohd Yasin IS, Mohd Yusoff S, Mohd ZS, Abd Wahid Mohd E
    Trop Anim Health Prod, 2011 Jan;43(1):179-87.
    PMID: 20697957 DOI: 10.1007/s11250-010-9672-5
    This study was carried out to determine the antibody responses and protective capacity of an inactivated recombinant vaccine expressing the fimbrial protein of Pasteurella multocida B:2 following intranasal vaccination against hemorrhagic septicemia in goats. Goats were vaccinated intranasal with 10(6) CFU/mL of the recombinant vaccine (vaccinated group) and 10(6) CFU/mL of pET32/LIC vector without fimbrial protein (control group). All three groups were kept separated before all goats in the three groups were challenged with 10(9) CFU/mL of live pathogenic P. multocida B:2. During the course of study, both serum and lung lavage fluid were collected to evaluate the antibody levels via enzyme-linked immunosorbent assay. It was found that goats immunized with the inactivated recombinant vaccine developed a strong and significantly (p 
    Matched MeSH terms: Antigens, Bacterial/immunology*
  5. Ghasemzadeh-Moghaddam H, van Wamel W, van Belkum A, Hamat RA, Tavakol M, Neela VK
    Eur J Clin Microbiol Infect Dis, 2018 Feb;37(2):255-263.
    PMID: 29103153 DOI: 10.1007/s10096-017-3124-3
    The humoral immune responses against 46 different staphylococcal antigens in 27 bacteremia patients infected by clonally related methicillin-resistant Staphylococcus aureus (MRSA) strains of a single sequence type (ST) 239 were investigated. A group of non-infected patients (n = 31) hospitalized for different reasons served as controls. All strains were confirmed as ST 239 by S. aureus and mecA-specific PCR, spa, and multi-locus sequence typing (MLST). In each bacteremia patient, a unique pattern of S. aureus antigen-specific immune responses after infection was observed. Antibody levels among bacteremia patients were significantly higher than controls for HlgB (P = 0.001), LukD (P = 0.009), LukF (P = 0.0001), SEA (P = 0.0001), SEB (P = 0.011), SEC (P = 0.010), SEQ (P = 0.049), IsaA (P = 0.043), IsdA (P = 0.038), IsdH (P = 0.01), SdrD (P = 0.001), SdrE (P = 0.046), EsxA (P = 0.0001), and SA0104 (P = 0.0001). On the other hand, the antibody levels were significantly higher among controls for SSL3 (P = 0.009), SSL9 (P = 0.002), and SSL10 (P = 0.007) when the IgG level on the day of infection was compared with that measured on the day of admission. Diversity was observed in the immune response against the antigens. However, a set of antigens (IsaA, IsdA, IsdH, SdrD, and HlgB) triggered a similar type of immune response in different individuals. We suggest that these antigens could be considered when developing a multi-component (passive) vaccine. SEA and/or its specific antibodies seem to play a critical role during ST239 MRSA bacteremia and SEA-targeted therapy may be a strategy to be considered.
    Matched MeSH terms: Antigens, Bacterial/immunology*
  6. Lawan A, Jesse FFA, Idris UH, Odhah MN, Arsalan M, Muhammad NA, et al.
    Microb Pathog, 2018 Apr;117:175-183.
    PMID: 29471137 DOI: 10.1016/j.micpath.2018.02.039
    Innumerable Escherichia coli of animal origin are identified, which are of economic significance, likewise, cattle, sheep and goats are the carrier of enterohaemorrhagic E. coli, which are less pathogenic, and can spread to people by way of direct contact and through the contamination of foodstuff or portable drinking water, causing serious illness. The immunization of ruminants has been carried out for ages and is largely acknowledged as the most economical and maintainable process of monitoring E. coli infection in ruminants. Yet, only a limited number of E. coli vaccines are obtainable. Mucosal surfaces are the most important ingress for E. coli and thus mucosal immune responses function as the primary means of fortification. Largely contemporary vaccination processes are done by parenteral administration and merely limited number of E. coli vaccines are inoculated via mucosal itinerary, due to its decreased efficacy. Nevertheless, aiming at maximal mucosal partitions to stimulate defensive immunity at both mucosal compartments and systemic site epitomises a prodigious task. Enormous determinations are involved in order to improve on novel mucosal E. coli vaccines candidate by choosing apposite antigens with potent immunogenicity, manipulating novel mucosal itineraries of inoculation and choosing immune-inducing adjuvants. The target of E. coli mucosal vaccines is to stimulate a comprehensive, effective and defensive immunity by specifically counteracting the antibodies at mucosal linings and by the stimulation of cellular immunity. Furthermore, effective E. coli mucosal vaccine would make vaccination measures stress-free and appropriate for large number of inoculation. On account of contemporary advancement in proteomics, metagenomics, metabolomics and transcriptomics research, a comprehensive appraisal of the immeasurable genes and proteins that were divulged by a bacterium is now in easy reach. Moreover, there exist marvellous prospects in this bourgeoning technologies in comprehending the host bacteria affiliation. Accordingly, the flourishing knowledge could massively guarantee to the progression of immunogenic vaccines against E. coli infections in both humans and animals. This review highlight and expounds on the current prominence of mucosal and systemic immunogenic vaccines for the prevention of E. coli infections in ruminants.
    Matched MeSH terms: Antigens, Bacterial/immunology
  7. Khalilpour A, Santhanam A, Wei LC, Saadatnia G, Velusamy N, Osman S, et al.
    Asian Pac J Cancer Prev, 2013;14(3):1635-42.
    PMID: 23679248
    Helicobacter pylori antigen was prepared from an isolate from a patient with a duodenal ulcer. Serum samples were obtained from culture-positive H. pylori infected patients with duodenal ulcers, gastric ulcers and gastritis (n=30). As controls, three kinds of sera without detectable H. pylori IgG antibodies were used: 30 from healthy individuals without history of gastric disorders, 30 from patients who were seen in the endoscopy clinic but were H. pylori culture negative and 30 from people with other diseases. OFF-GEL electrophoresis, SDS-PAGE and Western blots of individual serum samples were used to identify protein bands with good sensitivity and specificity when probed with the above sera and HRP-conjugated anti-human IgG. Four H. pylori protein bands showed good (≥ 70%) sensitivity and high specificity (98-100%) towards anti-Helicobacter IgG antibody in culture- positive patients sera and control sera, respectively. The identities of the antigenic proteins were elucidated by mass spectrometry. The relative molecular weights and the identities of the proteins, based on MALDI TOF/ TOF, were as follows: CagI (25 kDa), urease G accessory protein (25 kDa), UreB (63 kDa) and proline/pyrroline- 5-carboxylate dehydrogenase (118 KDa). These identified proteins, singly and/or in combinations, may be useful for diagnosis of H. pylori infection in patients.
    Matched MeSH terms: Antigens, Bacterial/immunology*; Antigens, Bacterial/metabolism
  8. Engelhardt KR, Gertz ME, Keles S, Schäffer AA, Sigmund EC, Glocker C, et al.
    J Allergy Clin Immunol, 2015 Aug;136(2):402-12.
    PMID: 25724123 DOI: 10.1016/j.jaci.2014.12.1945
    BACKGROUND: Mutations in dedicator of cytokinesis 8 (DOCK8) cause a combined immunodeficiency (CID) also classified as autosomal recessive (AR) hyper-IgE syndrome (HIES). Recognizing patients with CID/HIES is of clinical importance because of the difference in prognosis and management.

    OBJECTIVES: We sought to define the clinical features that distinguish DOCK8 deficiency from other forms of HIES and CIDs, study the mutational spectrum of DOCK8 deficiency, and report on the frequency of specific clinical findings.

    METHODS: Eighty-two patients from 60 families with CID and the phenotype of AR-HIES with (64 patients) and without (18 patients) DOCK8 mutations were studied. Support vector machines were used to compare clinical data from 35 patients with DOCK8 deficiency with those from 10 patients with AR-HIES without a DOCK8 mutation and 64 patients with signal transducer and activator of transcription 3 (STAT3) mutations.

    RESULTS: DOCK8-deficient patients had median IgE levels of 5201 IU, high eosinophil levels of usually at least 800/μL (92% of patients), and low IgM levels (62%). About 20% of patients were lymphopenic, mainly because of low CD4(+) and CD8(+) T-cell counts. Fewer than half of the patients tested produced normal specific antibody responses to recall antigens. Bacterial (84%), viral (78%), and fungal (70%) infections were frequently observed. Skin abscesses (60%) and allergies (73%) were common clinical problems. In contrast to STAT3 deficiency, there were few pneumatoceles, bone fractures, and teething problems. Mortality was high (34%). A combination of 5 clinical features was helpful in distinguishing patients with DOCK8 mutations from those with STAT3 mutations.

    CONCLUSIONS: DOCK8 deficiency is likely in patients with severe viral infections, allergies, and/or low IgM levels who have a diagnosis of HIES plus hypereosinophilia and upper respiratory tract infections in the absence of parenchymal lung abnormalities, retained primary teeth, and minimal trauma fractures.

    Matched MeSH terms: Antigens, Bacterial/blood; Antigens, Bacterial/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links