Purple sweet potato (PSP) is a rich source of anthocyanins, but the anthocyanin content and color can be affected by the drying method and processing condition. Response surface methodology (RSM) with a Box-Behnken design (BBD) was used to investigate the effects of citric acid (CA) concentration, steam pressure (SP) and rotation speed (DS) on the physicochemical and functional properties of drum-dried purple sweet potato powder (PSPP). The anthocyanins of the PSPP were analyzed using mass spectrometry with electrospray ionization and twelve anthocyanins were identified. The results indicated that the moisture content (4.80 ± 0.17-9.97 ± 0.03%) and water activity (0.290 ± 0.004-0.47 ± 0.001) (p < 0.05) decreased with increasing drum temperature as well as with reduced drum rotating speed. CA had a significant (p < 0.05) effect on the color and total anthocyanin content (101.83 ± 2.20-124.09 ± 2.89 mg/100 g) of the PSPP. High SP and low DS negatively affected the antioxidant properties of the PSPP. DPPH value of the PSPP ranged from 20.41 ± 0.79 to 30.79 ± 1.00 μmol TE/g. The optimal parameters were achieved at 0.59% CA, 499.8 kPa SP and 3 rpm DS.
Noni fruits (Morinda citrifolia) are a source of phenolic bioactive compounds (scopoletin, alizarin, and rutin), which have antioxidant, antimicrobial, anticancer, and anti-inflammatory activities. In this study, subcritical water was applied to determine the extraction yields and kinetics of phenolic compounds from noni fruits. The scopoletin and alizarin yields increased with the increase in temperature from 100 to 140 °C, while that of rutin increased up to 120 °C and then decreased at 140 °C. The yields of all the compounds rapidly increased from 1 to 2 mL/min and then slightly up to 3 mL/min of water flow rate. The extraction kinetics were assessed using two mathematical models. The two-site kinetic desorption model had a better fit for all experimental conditions throughout the extraction cycle and best described the extraction kinetics of phenolic compounds from noni fruits. The diffusion coefficients of scopoletin and alizarin at 140 °C and 3 mL/min were 3.7- and 16.2-fold higher than those at 100 °C and 1 mL/min, respectively. The activation energies of alizarin were 2.9- to 8.5-fold higher than those of scopoletin at various flow rates. Thus, subcritical water could be an excellent solvent with higher extraction yields and shorter extraction times using an environmentally friendly solvent.
Edible bird's nest (EBN) produced by Aerodramus fuciphagus has a high demand for nutritional and medicinal application throughout the world. The present study was to evaluate the authentication of a man-made house EBN, which are half cup and stripe-shaped by FTIR. Next, both samples were compared according to their metabolite, nutritional, and mineral composition. The results indicated that the FTIR spectra of both EBN samples were identical and similar to the reference, suggesting the authenticity of the EBN used. The metabolites that contribute to the possible medicinal properties of EBN were found by using GC-MS. The results of the proximate analysis, followed by the standard AOAC method, inferred that both EBN shapes to be rich in crude protein and carbohydrate contents. However, the proximate composition between the half cup and stripe-shaped EBN showed significant differences. Major mineral elements detected were calcium and sodium, and magnesium contents were significantly different between both EBN. Additionally, the half cup and stripe-shaped EBN had a low level of heavy metal content than the maximum regulatory limit as set by the Malaysian Food Act 1983. This study concludes that the nutritional composition varied between the samples and thus suggests that nutrient content should be considered as criteria for the grading requirement of commercialized EBN.
This article presents the results of a comprehensive toxicity assessment of brazzein and monellin, yeast-produced recombinant sweet-tasting proteins. Excessive sugar consumption is one of the leading dietary and nutritional problems in the world, resulting in health complications such as obesity, high blood pressure, and cardiovascular disease. Although artificial small-molecule sweeteners widely replace sugar in food, their safety and long-term health effects remain debatable. Many sweet-tasting proteins, including thaumatin, miraculin, pentadin, curculin, mabinlin, brazzein, and monellin have been found in tropical plants. These proteins, such as brazzein and monellin, are thousands-fold sweeter than sucrose. Multiple reports have presented preparations of recombinant sweet-tasting proteins. A thorough and comprehensive assessment of their toxicity and safety is necessary to introduce and apply sweet-tasting proteins in the food industry. We experimentally assessed acute, subchronic, and chronic toxicity effects, as well as allergenic and mutagenic properties of recombinant brazzein and monellin. Our study was performed on three mammalian species (mice, rats, and guinea pigs). Assessment of animals' physiological, biochemical, hematological, morphological, and behavioral indices allows us to assert that monellin and brazzein are safe and nontoxic for the mammalian organism, which opens vast opportunities for their application in the food industry as sugar alternatives.
Novel hierarchical metal-organic framework/chitosan aerogel composites were developed for oil bleaching. UiO-66-COOH-type metal organic frameworks (Zr-MOFs) were synthesized and integrated onto a chitosan matrix with different contents and named MOF-aerogel-1 and MOF-aerogel-2. Due to the compatibility of chitosan, the carboxylic zirconium MOF-aerogels not only maintained the inherent chemical accessibility of UiO-66-COOH, but the unique crystallization and structural characteristics of these MOF nanoparticles were also preserved. Through 3-dimensional reconstructed images, aggregation of the UiO-66-COOH particles was observed in MOF-aerogel-1, while the MOF was homogeneously distributed on the surface of the chitosan lamellae in MOF-aerogel-2. All aerogels, with or without immobilized MOF nanoparticles, were capable of removing carotenoids during oil bleaching. MOF-aerogel-2 showed the most satisfying removal proportions of 26.6%, 36.5%, and 47.2% at 50 °C, 75 °C, and 100 °C, respectively, and its performance was very similar to that of commercial activated clay. The reuse performance of MOF-aerogel-2 was tested, and the results showed its exceptional sustainability for carotenoid removal. These findings suggested the effectiveness of the MOFaerogel for potential utilization in oil bleaching treatments.
Flavor is a crucial parameter for assessing the sensory quality of yak milk. However, there is limited information regarding the factors influencing its taste. In this study, the effects of endogenous lipoprotein lipase (LPL) on the volatile flavor components of yak milk under storage conditions of 4 °C, 18 °C and 65 °C were analyzed via headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) combined with orthogonal partial least-squares (OPSL) discrimination, and the reasons for the changes in yak milk flavors were investigated. Combined with the difference in the changes in volatile flavor substance before and after the action of LPL, LPL was found to have a significant effect on the flavor of fresh yak milk. Fresh milk was best kept at 4 °C for 24 h and pasteurized for more than 24 h. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were employed to characterize the volatile components in yak milk under various treatment conditions. Twelve substances with significant influence on yak milk flavor were identified by measuring their VIP values. Notably, 2-nonanone, heptanal, and ethyl caprylate exhibited OAV values greater than 1, indicating their significant contribution to the flavor of yak milk. Conversely, 4-octanone and 2-heptanone displayed OAV values between 0.1 and 1, showing their important role in modifying the flavor of yak milk. These findings can serve as monitoring indicators for assessing the freshness of yak milk.
Water-in-oil-in-water (W/O/W) emulsions with high-melting diacylglycerol (DAG) crystals incorporated in the oil droplets were fabricated and the compositions were optimized to achieve the best physical stability. The stability against osmotic pressure, encapsulation efficiency and in vitro release profiles of both water- and oil-soluble bioactives were investigated. The presence of interfacial crystallized DAG shells increased the emulsion stability by reducing the swelling and shrinkage of emulsions against osmotic pressure and heating treatment. DAG crystals located at the inner water/oil (W1/O) interface and the gelation of the inner phase by gelatin helped reduce the oil droplet size and slow down the salt release rate. The DAG and gelatin-contained double emulsion showed improved encapsulation efficiency of bioactives, especially for the epigallocatechin gallate (EGCG) during storage. The double emulsions with DAG had a lower digestion rate but higher bioaccessibility of EGCG and curcumin after in vitro digestion. DAG-stabilized double emulsions with a gelled inner phase thus can be applied as controlled delivery systems for bioactives by forming robust interfacial crystalline shells.
The demand for ethical foods is rising, with halal foods playing a significant role in this trend. However, halal standards vary globally, which can have substantial implications. Multiple Halal Certification Bodies (HCBs) can approve food products but they often prioritize national regulations over international alignment. To explore the similarities and differences in halal standards, we conducted a critical analysis of various standards, including Pakistan's halal standards, the Standards and Metrology Institute for Islamic Countries, Majlis Ugama Islam Singapore, Majelis Ulama Indonesia, GCC Standardization Organization, Jabatan Kemajuan Islam Malaysia, ASEAN General Guideline, and the halal standards of Thailand, Iran, and Brunei, through a literature survey. While some commonalities exist, differences stemming from various Islamic schools of thought pose challenges for regulators, consumers, and food producers. Controversial issues include stunning, slaughtering, aquatic animals, insects, and labeling requirements. For example, all standards except the GSO allow non-Muslim slaughterers, and stunning is permitted in all standards except those of Pakistan. These disparities underscore the need for standardization and harmonization in the halal food industry to meet the growing demand for ethical foods.
Food self-sufficiency has long been regarded as essential for understanding and managing urban and regional food systems; however, few studies have examined the food self-sufficiency of megacity regions within a comprehensive framework that distinguishes different types of agricultural land (i.e., arable land, horticultural landscapes, and waters). To fill these gaps, we took the Pearl River Delta as a case study and quantified the foodsheds of different types of agricultural land by calculating the land footprint of food consumption. On this basis, food self-sufficiency is defined as the ratio of available and required agricultural area for regional food demand. The results indicated that the self-sufficiency level provided by the arable land in the Pearl River Delta is low and cannot realize self-sufficiency at the regional and urban levels. The horticultural landscapes can provide self-sufficiency at the regional level, whereas the regions with water cannot, as their foodsheds extend over the boundary of the Pearl River Delta. For arable land, establishing a localized regional food system requires expanding the foodshed size. These findings provide evidence that megacity regions may face increasing difficulties in achieving self-sufficiency in the near future. This research can improve policymakers' understanding of the sustainability and resilience of regional food systems in megacity regions.
Aroma and other physicochemical parameters are important attributes influencing consumer perception and acceptance of rice. However, current methods using multiple instruments and laboratory analysis make these assessments costly and time-consuming. Therefore, this study aimed to assess rice quality traits of 17 commercial rice types using a low-cost electronic nose and portable near-infrared spectrometer coupled with machine learning (ML). Specifically, artificial neural networks (ANN) were used to classify the type of rice and predict rice quality traits (aromas, color, texture, and pH of cooked rice) as targets. The ML models developed showed that the chemometrics obtained from both sensor technologies successfully classified the rice (Model 1: 98.7%; Model 2: 98.6%) and predicted the peak area of aromas obtained by gas chromatography-mass spectroscopy found in raw (Model 3: R = 0.95; Model 6: R = 0.95) and cooked rice (Model 4: R = 0.98; Model 7: R = 0.96). Furthermore, a high R = 0.98 was obtained for Model 5 to estimate the color, texture, and pH of cooked rice. The proposed method is rapid, low-cost, reliable, and may help the rice industry increase high-quality rice production and accelerate the adoption of digital technologies and artificial intelligence to support the rice value chain.
Silkworm pupae, a waste product from the silk production industry, can be an alternative source of edible oil, thus reducing the industry's waste. In the present work, frozen silkworm pupae were used as raw material to extract oil via an aqueous saline process. The Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize the extraction process. The extraction conditions with the highest oil yield and a low peroxide value were obtained when using a saline solution concentration of 1.7% w/v, a ratio of aqueous liquid to silkworm pupae of 3.3 mL/g, and a 119 min stirring time at the stirring speed of 100 rpm. Under these conditions, silkworm oil with a yield of 3.32%, peroxide values of approximately 1.55 mM, and an acid value of 0.67 mg KOH/g oil was obtained. The extracted oil contained omega-3 acids (α-linolenic acid), which constituted around 25% of the total fatty acids, with approximate cholesterol levels of 109 mg/100 g oil. The amounts of β-carotene and α-tocopherol were approximately 785 and 9434 μg/100 g oil, respectively. Overall, the results demonstrated that oil extracted from silkworm pupae has good quality parameters and thus can be used as a new valuable source of edible lipids.
Apples are one of the most popular fruits in the world and have a significant share in domestic and international fruit production. Drying is a common method used to extend the shelf life of apples. However, it also induces irregular morphological changes in apples, which are essential to maintaining the structural integrity of the material. Therefore, it is necessary to understand the effect of cellular changes at the microscopic level on the macroscopic deformation of the material during drying. In this paper, the evolution of cell wall pectin fractions and viscoelastic properties of apples during freeze drying combined with hot air drying was investigated. The findings indicated that during the HAD stage, a decrease in the relaxation modulus (E1) of the samples was observed in the compression tests when the sample temperature was significantly higher than the glass transition temperature (Tg). As the difference between the two decreased, the samples exhibited increased stiffness and higher E1. The results of the pectin content analysis showed that the HAD process accelerated the loss and degradation of water-soluble pectin in the samples with high moisture content at the transition point. Simultaneously, the esterification degree of chelator-soluble pectin increased, leading to a reduction in the support provided to the cellular structure of the samples, which consequently affected their mechanical properties. These findings may provide valuable information for the application of freeze drying combined with hot air drying in the efficient processing of dried fruit and vegetable products.