RESULTS: UAE for 15 and 30 min and MAE for 1 and 2 min significantly increased protein yield and extraction efficiency compared to the control. Both UAE and MAE processes, especially MAE for 2 min, greatly improved the emulsifying and foaming properties of extracted proteins. FTAE one and three cycles did not increase the protein yield and extraction efficiency but showed enhanced functional properties, especially foaming. All samples showed changes in protein structure, such as increased exposed sulfhydryl (SH) contents, denaturation temperatures, and enthalpy. Only MAE samples had low-molecular-weight proteins based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. UAE and FTAE samples had significantly higher antioxidant activities, while the MAE process showed the opposite.
CONCLUSION: UAE and MAE processes improved the yield and functionality of extracted silkworm proteins, while MAE negatively impacted protein antioxidant activities. © 2023 Society of Chemical Industry.
RESULTS: Defatted kenaf seed powder yielded four DF fractions: alkali-soluble hemicellulose (146.4 g kg-1 ), calcium-bound pectin (10.3 g kg-1 ) and acid-soluble pectin (25.4 g kg-1 ) made up the soluble fibre fraction, whereas cellulose (202.2 g kg-1 ) comprised the insoluble fraction. All fractions were evaluated for their physicochemical properties. The DF fractions contained glucose, mannose, xylose and arabinose, and a small amount of uronic acid (1.2-2.7 g kg-1 ). The isolated pectin fractions had a low degree of esterification (14-30%). All the isolated DF fractions had high average molecular weights ranging from 0.3 to 4.3 × 106 g mol-1 . X-ray diffractogram analysis revealed that the fractions consisted mainly of an amorphous structure with a relative crystallinity ranging from 31.6% to 44.1%. The Fourier-transform infrared spectroscopy spectrum of kenaf seed and its DF fractions showed typical absorption of polysaccharides, with the presence of hydroxyl, carboxyl, acetyl and methyl groups. Scanning electron microscopy analysis demonstrated that the raw material with the rigid structure resulted in soluble and insoluble DF fractions with more fragile and fibrous appearances, respectively. The soluble DF demonstrated greater flowability and compressibility than the insoluble fractions.
CONCLUSION: These findings provide novel information on the DF fractions of kenaf seeds, which could be used as a potential new DF for the food industry. © 2023 Society of Chemical Industry.
RESULT: The result shows that the optimum computational intelligence techniques include the 3-9-1 topology trained with Bayesian regulation function for ANN, Gaussian kernel function for SVM, Matérn covariance function combined with zero mean function for GPR, boosting method for EoT and 4 minimum leaf size for DT. GPR has the highest performance with R2 of 100% and 99.71% during calibration and testing of the model, respectively. GSA reveals that all the models significantly rely on the variation in time as the main factor that affects the model outputs.
CONCLUSION: Therefore, the computational intelligence models, especially GPR, can be applied for an effective description of moisture evolution during small-scale and industrial dehydration of glutinous rice. © 2024 Society of Chemical Industry.
RESULTS: The longer time and higher power of ultrasonics accelerated the glycosylation reaction with an increase in glycosylation degree and browning index values. Compared with original FG, FG-κC mixture and bovine gelatin, UAG-modified FG possessed higher emulsification activity index, emulsion stability index, gel strength, hardness and melting temperature values. Among them, gelatin modified by appropriate ultrasonic conditions (200 W, 0.5 h) had the highest emulsifying and gelling properties. Rheological results showed that UAG contributed to the gelation process of gelatin with advanced gelation time and endowed it with high viscosity. Structural analysis indicated that UAG promoted κC to link with FG by the formation of covalent and hydrogen bonds, restricting more bound and immobilized water in the gels, exhibiting higher gelling properties.
CONCLUSION: This work showed that UAG with κC is a promising method to produce high gelling and emulsifying properties of FG that could replace MG. © 2023 Society of Chemical Industry.
RESULTS: The fact that GMP attached covalently with the phosphate group of sodium tripolyphosphate (GMP-STP) was disclosed directly by Fourier transform infrared spectroscopy. Furthermore, ultrasound significantly improved the hydrophobicity and solubility of GMP-STP, which could be attributed to the conversion of α-helix to β-sheet, β-turns, and random coils by sonication. The spatial stabilization of the protein phosphorylation process was boosted by ultrasound, making the droplets more dispersed, and thus an improvement in the functional properties of GMP-STP was observed. Water-holding capacity, oil-binding capacity, and emulsifying and foaming properties were best at an ultrasound power of 400 W.
CONCLUSION: Ultrasound-assisted phosphorylation has great potential to modulate the structure-function relationship of proteins. © 2023 Society of Chemical Industry.
RESULTS: ET 2.0 was found to be the best enzyme for hydrolysis. Under the optimum condition, the FFA content achievable was 790 g kg-1 after 24 h of reaction with 1:1 water-to-oil mass ratio at 50 °C and stirring speed of 9 × g. Furthermore, with the addition of 2 g kg-1 ascorbic acid, it was found that 98% of carotenoids and 96% of tocols could be retained after hydrolysis.
CONCLUSION: This work shows that enzymatic hydrolysis, which is inherently safer, cleaner and sustainable is feasible to replace the conventional methanolysis for the production of palm phytonutrients. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
RESULTS: Scoby from black, green and oolong tea kombucha fermentation was assessed for its hydrocolloid effects in mango jam-making through evaluation of physicochemical, textural and sensory characteristics. Quality of jam was significantly improved with water activity reduction up to 22.22% to 0.679, moisture content reduction up to 37.06% to 19.92%, and a pH drop up to 5.9% to 3.19 with the use of 20 to 100 g kg-1 scoby. In colour analysis, presence of scoby led to a brighter jam due to higher L * values from 30.98 to a range of 31.82 to 40.83. Texture of jam with scoby gave higher gel strength and adhesiveness, with the most prominent effects from the black tea kombucha. Overall acceptability in sensory test scoring was above 70% on a nine-point hedonic scale with the 40 g kg-1 green tea kombucha scoby jam chosen as the most preferred.
CONCLUSION: Scoby gave significant contributions to jam stability, appearance and texture, showing potential as a clean-label food ingredient. © 2024 Society of Chemical Industry.
RESULTS: It was found that colour change was significantly reduced at elevated heat (100 °C, *∆E = 0.81 ± 0.05), reduced pH (pH 3, *∆E = 0.59 ± 0.04) and length of light exposure (*∆E = 3.16 ± 0.04). Antioxidant activity decreased under all treatments. Among the temperatures tested, fucoxanthin exhibited the highest activity at 60 °C, ranging from 0.92 to 3.04 mg Trolox equivalents (TE) g-1. Significant activity reductions (P
RESULTS: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis fractionated raw snail extract to approximately 24 protein bands, between 9 and 245 kDa. The prominent band at 33 kDa was detected in all raw and processed snail extracts. Immunoblotting tests of the raw extract demonstrated 19 immunoglobulin E (IgE)-binding proteins, and four of them, at 30, 35, 42 and 49 kDa, were revealed as the major IgE-binding proteins of P. polita. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified the 49 and 42 kDa major allergens as actin, whereas the 30 and 35 kDa major allergens were identified as tropomyosin. Immunoblotting revealed that the raw snail had more allergenic proteins than the processed snail. The degree of allergenicity in decreasing order was raw > brine pickled> boiled > roasted > fried > vinegar pickled. The presence of cross-reactivity between P. polita and the shellfish tested was exhibited with either no, complete, or partial inhibitions.
CONCLUSION: Actin and tropomyosin were identified as the major and cross-reactive allergens of P. polita among local patients with snail allergy. Those major allergens are highly stable to high temperatures, acidic pH, and high salt, which might played a crucial role in snail allergy in Malaysia. © 2023 Society of Chemical Industry.
RESULTS: The dichloromethane extract of P. crispum exhibited the highest phenolic content (42.31 ± 0.50 mg GAE g(-1) ) and ferric reducing ability (0.360 ± 0.009 mmol g(-1) ) of the various extractions performed. The extract showed DPPH radical scavenging activity with an IC50 value of 3310.0 ± 80.5 µg mL(-1) . Mouse fibroblasts (3T3-L1) pre-treated with 400 µg mL(-1) of the extract showed 50.9% protection against H2 O2 -induced DNA damage, suggesting its potential in cancer prevention. The extract (300 µg mL(-1) ) inhibited H2 O2 -induced MCF-7 cell migration by 41% ± 4%. As cell migration is necessary for metastasis of cancer cells, inhibition of migration is an indication of protection against metastasis.
CONCLUSION: Petroselinum crispum has health-promoting properties with the potential to prevent oxidative stress-related diseases and can be developed into functional food.
RESULTS: Both doses of the alcohol extract of S. polycystum and the 300 mg kg(-1) water extract, significantly reduced blood glucose and glycosylated haemoglobin (HbA1C ) levels. Serum total cholesterol, triglyceride levels and plasma atherogenic index were significantly decreased after 22 days treatment in all seaweed groups. Unlike metformin, S. polycystum did not significantly change plasma insulin in the rats, but increased the response to insulin.
CONCLUSION: The consumption of either ethanolic or water extracts of S. polycystum dose dependently reduced dyslipidaemia in type 2 diabetic rats. S. polycystum is a potential insulin sensitiser, for a comestible complementary therapy in the management of type 2 diabetes which can help reduce atherogenic risk.
RESULTS: Three oleogel systems exhibited a solid-like behavior, with the formation of crystalline forms dominated by β and β'. Among them, PS-COO exhibited enhanced capability with respect to immobilizing liquid oils, resulting in solidification with high oil-binding capacity, moderate hardness and good elasticity. By contrast, MG-COO demonstrated inferior stability compared to PS-COO and EC-COO. Furthermore, MG-COO and PS-COO demonstrated antioxidant properties against CO oxidation, whereas EC-COO exhibited the opposite effect. PS-COO and EC-COO exhibited superior thermodynamic behavior compared to MG-COO.
CONCLUSION: Three oleogels based on CO were successfully prepared. The mechanical strength, storage modulus and thermodynamic stability of the CO oleogel exhibited concentration dependence with increasing gelling agent addition. PS-COO demonstrated relatively robust oil-binding capacity and oxidative stability, particularly with a 15% PS addition. This information contributes to a deeper understanding of CO-based oleogels and offers theoretical insights for their application in food products. © 2024 Society of Chemical Industry.
RESULTS: The results indicated that acidification induced conversion of PPSI aggregates into linear chains. Increasing concentration promoted formation of cross-linked network structure shown in transmission electron microscopy images. Consequently, the viscosity, yield stress, storage modulus and flow activation energy significantly increased, further fabricating gel structure. Moreover, aggregation behavior suggested that more exposed proteins were involved in gel structure, thereby forming many hydrophobic cores as verified by fluorescence spectroscopy of pyrene. Afterwards, emulsion characteristics indicated that APPSI produced strong and thick steric hindrance around oil droplets and the coil-like interweaved chains locked the continuous phase, bringing strong elasticity and resistance to stress and creaming. Meanwhile, the lower fatty acid in APPSI-emulsion was released after simulated gastrointestinal digestion, mainly as a result of the high retention ratio of emulsion droplets. Furthermore, the elastic and viscous Lissajous curves suggested that the structure strength of APPSI-emulsion was similar to that of the salad dressing within the strain 53.22%.
CONCLUSION: The conformation of PPSI after acidification at pH 3.0 was suitable for preparing the stable emulsion. The obtained emulsion could resist digestion and maintain a strong structure, comprising a cholesterol-free and low-fat salad dressing substitute. © 2023 Society of Chemical Industry.
RESULTS: From the characterization of physical properties, PCE-0.3 had an impressive amorphous porosity, wettability and 3D honeycomb-like structural morphology with a pore framework consisting of micropores and mesopores. According to the structural advantages of 3D hierarchical pores such as interconnected honeycombs, PCE-0.3 as supercapacitor electrode had a high specific capacitance of up to 285.89 F g-1 at 1 A. Furthermore, the supercapacitor exhibited high energy and power density of 21.54 Wh kg-1 and 161.13 W kg-1 , respectively, with a low internal resistance of 0.059 Ω.
CONCLUSION: The results indicated that 3D porous carbon materials such as interconnected honeycombs derived from the aromatic biomass of torch ginger leaves have significant potential for the development of sustainable energy storage devices. © 2023 Society of Chemical Industry.
RESULTS: The moisture, pH and sugar composition of all SBH samples adhered to the Malaysian Kelulut Honey Standard (MS2683:2017) but not to the International Codex Standard (CODEX) for honey. Trehalulose presence in all samples, regardless of geographical area, was predominant alongside fructose and glucose. Only hydroxymethylfurfural (HMF) content and electrical conductivity (EC) results complied with both standards. The principal component analysis biplot showed that the discrimination of SBH according to the five different areas was not feasible, indicating sample homogeneity.
CONCLUSION: The physicochemical evaluation of SBH from Peninsular Malaysia shows mainly homogeneous attributes of samples across geographical locations. These findings demonstrated that the current MS2683:2017 is relevant and accommodates all SBH of H. itama species produced in Peninsular Malaysia. Furthermore, the trehalulose range calculated in this study can be implemented as a new benchmark for the indicator of SBH honey quality standard by national and international food standard committees. © 2023 Society of Chemical Industry.
RESULTS: Lipase CN-TL (from Thermomyces lanuginosus) was selected through glycerolysis reaction and molecular docking to catalyze the glycerolysis reaction. Optimizing the immobilization method by covalently binding CN-TL to poly(ethylene glycol) diglycidyl ether (PEGDGE)-preactivated resin LX-201A resulted in the preparation of the immobilized enzyme TL-PEGDGE-LX. The immobilized enzyme retained over 90% of its initial activity after five consecutive reactions, demonstrating excellent reusability. The DAG content in the product remained at 84.8% of its initial level, further highlighting the enzyme's potential for reusability and its promising applications in the food and oil industries.
CONCLUSIONS: The immobilized lipase TL-PEGDGE-LX, created by covalently immobilizing lipase CN-TL on PEGDGE-preactivated carriers, demonstrated broad applicability and excellent reusability. This approach offers an economical and convenient immobilization strategy for the enzymatic glycerolysis production of DAG. © 2024 Society of Chemical Industry.
RESULTS: Headspace solid-phase microextraction-gas chromatography-mass spectrometry revealed that the spice flavor of beef was significantly enhanced by 500 W ultrasound-assisted marination. Meanwhile, the experimental results demonstrated that the ultrasound-assisted marination promoted the unfolding of beef myofibrillar protein structure, which increased the number of hydrophobic and hydrogen bonding sites, enhanced the electrostatic effect and improved the functional properties of the protein. Ultrasound-assisted marination significantly enhanced the binding ability of beef myofibrillar proteins to flavor compounds compared with conventional marination. An electronic nose confirmed that this resulted in a significant increase in the flavor of the marinated meat.
CONCLUSION: Ultrasound-assisted marination effectively enhanced the flavor of marinated meat, which was closely related to the development of protein conformation. The results of this study have important implications for the food industry and the role of protein unfolding processes in flavor modulation. In particular, the findings can be practically applied to improving meat flavor under ultrasound-assisted marination. © 2024 Society of Chemical Industry.
RESULTS: CP and EE were found to contain appreciable levels of total phenolic contents (50.6 and 33.41 g kg(-1) as gallic acid equivalent) and total flavonoid contents (205.6 and 244.8 g kg(-1) as rutin equivalent), respectively. DPPH free radical scavenging activity of CP is superior to EE (P < 0.05) showing IC(50) of 77.2 and 995.1 µg mL(-1), respectively. Methicillin-resistant Staphylococcus aureus (MRSA), Bacillus subtilis, Pseudomonas aeruginosa and Salmonella choleraesuis were tested against CP and EE. Only MRSA was the most susceptible bacteria to CP. GC/MS studies resulted in the identification of 79 and 73 compounds in CP and EE, respectively. The most abundant components of EE included β-pinene (24.92%) and 1-dodecene (24.31%). While the major compound in CP were 1,6-octadien-3-ol,3,7-dimethyl (11.55%), cinnamaldehyde (56.15%) and 1-phenyl-propane-2,2-diol diethanoate (11.38%).
CONCLUSION: This study suggests that the essential oils from Cinnamomum pubescens Kochummen and Etlingera elatior could be potentially used as a new source of natural antioxidant and antibacterial in the food and pharmaceutical industries.