Antimicrobial resistance in Acinetobacter baumannii is a growing public health concern and an important pathogen in nosocomial infections. We investigated the genes involved in resistance to carbapenems and cephalosporins in clinical A. baumannii isolates from a tertiary medical centre in Malaysia. A. baumannii was isolated from 167 clinical specimens and identified by sequencing of the 16S rRNA and rpoB genes. The MIC for imipenem, meropenem, ceftazidime and cefepime were determined by the E-test method. The presence of carbapenemase and cephalosporinase genes was investigated by PCR. The isolates were predominantly nonsusceptible to carbapenems and cephalosporins (>70 %) with high MIC values. ISAba1 was detected in all carbapenem-nonsusceptible A. baumannii harbouring the blaOXA-23-like gene. The presence of blaOXA-51-like and ISAba1 upstream of blaOXA-51 was not associated with nonsusceptibility to carbapenems. A. baumannii isolates harbouring ISAba1-blaADC (85.8 %) were significantly associated with nonsusceptibility to cephalosporins (P<0.0001). However, ISAba1-blaADC was not detected in a minority (<10 %) of the isolates which were nonsusceptible to cephalosporins. The acquired OXA-23 enzymes were responsible for nonsusceptibility to carbapenems in our clinical A. baumannii isolates and warrant continuous surveillance to prevent further dissemination of this antibiotic resistance gene. The presence of ISAba1 upstream of the blaADC was a determinant for cephalosporin resistance. However, the absence of this ISAba1-blaADC in some of the isolates may suggest other resistance mechanisms and need further investigation.
One thousand and forty-five tissue samples of skeletal muscles, tongue, heart, diaphragm and esophagus were collected from 209 animals (43 sheep, 89 goats and 77 cattle) from an abattoir in Selangor between February and October, 2013. Each sample was divided into three pieces with each piece measuring 2-3 mm3. Each piece was then squeezed between two glass slides and examined microscopically at x 10 magnification for the presence of sarcocystosis. Three positive samples from each animal species were then fixed in 10% formalin for histological processing. Seven positive samples collected from each animal species were preserved at -80°C or 90% ethanol for gene expression studies. Microsarcocysts were detected in 114 (54.5%) animals by light microscopy (LM). The infection rates in sheep, goat and cattle were 86, 61.8 and 28.6% respectively. The highest rate of infection was in the skeletal muscles of sheep (64.9%) and goats (63.6%) and in the heart of cattle (63.6%). The cysts were spindle to oval in shape and two stages were recognized, the peripheral metrocytes and centrally located banana-shaped bradyzoites. 18S rRNA gene expression studies confirmed the isolates from the sheep as S. ovicanis, goats as S. capracanis and cattle as S. bovicanis. This, to the best of our knowledge, is the first molecular identification of an isolate of S. ovicanis and S. capracanis in Malaysia. Further studies with electron microscopy (EM) are required in the future to compare the features of different types of Sarcocysts spp.
This study was conducted to determine the occurrence of Anaplasma spp. in the blood samples of cattle, goats, deer and ticks in a Malaysian farm. Using polymerase chain reaction (PCR) and sequencing approach, Anaplasma spp. was detected from 81(84.4%) of 96 cattle blood samples. All blood samples from 23 goats and 22 deer tested were negative. Based on the analysis of the Anaplasma partial 16S ribosomal RNA gene, four sequence types (genotypes 1 to 4) were identified in this study. Genotypes 1-3 showed high sequence similarity to those of Anaplasma platys/ Anaplasma phagocytophilum, whilst genotype 4 was identical to those of Anaplasma marginale/ Anaplasma centrale/ Anaplasma ovis. Anaplasma DNA was detected from six (5.5%) of 109 ticks which were identified as Rhipicephalus (formely known as Boophilus) microplus ticks collected from the cattle. This study reported for the first time the detection of four Anaplasma sequence types circulating in the cattle population in a farm in Malaysia. The detection of Anaplasma DNA in R. microplus ticks in this study provides evidence that the ticks are one of the potential vectors for transmission of anaplasmosis in the cattle.
We report a fatal case of Candida auris that was involved in mixed candidemia with Candida tropicalis, isolated from the blood of a neutropenic patient. Identification of both isolates was confirmed by amplification and sequencing of internal transcribed spacer and D1/D2 domain of large subunit in rRNA gene. Antifungal susceptibility test by E-test method revealed that C. auris was resistant to amphotericin B, anidulafungin, caspofungin, fluconazole, itraconazole and voriconazole. On the other hand, C. tropicalis was sensitive to all antifungal tested. The use of chromogenic agar as isolation media is vital in detecting mixed candidemia.