Displaying publications 1421 - 1440 of 5664 in total

Abstract:
Sort:
  1. Kannan RY, Sales KM, Salacinski HJ, Butler PE, Seifalian AM
    Med J Malaysia, 2004 May;59 Suppl B:107-8.
    PMID: 15468841
  2. Suzina AH, Azlina A, Shamsuria O, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:105-6.
    PMID: 15468840
    Mutagenicity of CORAGRAF (natural coral) and REKAGRAF (hydroxyapatite) was tested in Ames test with and without an external metabolic activation system (S9). The test revealed no mutagenic activity of both locally produced osseous substitutes.
  3. Hollister SJ, Lin CY, Lin CY, Schek RD, Taboas JM, Flanagan CL, et al.
    Med J Malaysia, 2004 May;59 Suppl B:131-2.
    PMID: 15468853
  4. Abd Rashid MY, Abu Bakar A, Mohd Asri MT, Iskandar SM
    Med J Malaysia, 2004 May;59 Suppl B:135-6.
    PMID: 15468855
    Poly (p-phenylene vinylene) (PPV) was synthesized from p-xylylene bis(tetrahydrothiophenium chloride) using the Wessling route and characterized by Fourier Transform Infra-Red (FTIR) and UV-visible (UV-VIS) spectroscopic techniques. The significance of thermal treatment along with evolution of precursor polymer to polymer PPV was also studied through these spectroscopic techniques. Thermally Stimulated Current (TSC) measurements indicated the presence of crystallization, sulphonium group which occurred through the evolution from precursor polymer to polymer PPV during thermal treatment.
  5. Santin M, Morris C, Harrison M, Mikhalovska L, Lloyd AW, Mikhalovsky S
    Med J Malaysia, 2004 May;59 Suppl B:93-4.
    PMID: 15468834
    In-stent restenosis is caused by the proliferation of the smooth muscle cells (SMCs) following a host response towards the implanted device. However, the precise biochemical and cellular mechanisms are still not completely understood. In this paper, the behaviour of SMCs has been investigated by an in vitro model where the cells were stimulated by platelet derived growth factor (PDGF) on tissue-like substrates as well as on biomaterials such as stainless steel (St) and diamond-like carbon (DLC)-coated St. The results demonstrated that SMCs have a completely different adhesion mode on St and become particularly prone to proliferation and pro-inflammatory cytokine secretion under PDGF stimulus. This would suggest that restenosis may caused by the accidental contact of the SMC with the St substrate under an inflammatory insult.
  6. Kokubo T
    Med J Malaysia, 2004 May;59 Suppl B:91-2.
    PMID: 15468833
    Metallic materials implanted into bone defects are generally encapsulated by a fibrous tissue. Some metallic materials such as titanium and tantalum, however, have been revealed to bond to the living bone without forming the fibrous tissue, when they were subjected to NaOH solution and heat treatments. Thus treated metals form bone tissue around them even in muscle, when they take a porous form. This kind of osteoconductive and osteoinductive properties are attributed to sodium titanate or tantalate layer on their surfaces formed by the NaOH and heat treatments. These layers induce the deposition of bonelike apatite on the surface of the metals in the living body. This kind of bioactive metals are useful as bone substitutes even highly loaded portions, such as hip joint, spine and tooth root.
  7. Idris B, Rusnah M, Reusmaazran YM, Rohaida CH
    Med J Malaysia, 2004 May;59 Suppl B:67-8.
    PMID: 15468822
  8. Ginebra MP, Aparicio C, Engel E, Navarro M, Javier Gil F, Planell JA
    Med J Malaysia, 2004 May;59 Suppl B:65-6.
    PMID: 15468821
  9. Suhaida MG, Yahya IB, Darmawati MY
    Med J Malaysia, 2004 May;59 Suppl B:63-4.
    PMID: 15468820
    The aim of this study was to investigate the effect of the surfactant properties of polyvinyl alcohol (PVA) in enhancing the yield of small size microspheres. Naltrexone microspheres were prepared by solvent-solvent extraction evaporation process. PVA of various concentrations were added into the aqueous phase prior to the mixing process. The addition of PVA was expected to influence the shape, size distribution, drug loading and drug release profile. The results indicated that it is desirable to increase the weight fraction of the microspheres with size range below 106 mm for the highest possible yield.
  10. Lai KL, Roziyanna A, Ogunniyi DS, Zainal AM, Azlan AA
    Med J Malaysia, 2004 May;59 Suppl B:61-2.
    PMID: 15468819
    Various blend ratios of high-density polyethylene (HDPE) and ultra high molecular weight polyethylene (UHMWPE) were prepared with the objective of determining their suitability as biomaterials. In the unfilled state, a blend of 50/50 (HDPE/UHMWPE) ratio by weight was found to yield optimum properties in terms of processability and mechanical properties. Hydroxyapatite (HA) was compounded with the optimum blend ratio. The effects of HA loading, varied from 0 to 50wt% for both filled and unfilled blends were tested for mechanical properties. It was found that the inclusion of HA in the blend led to a remarkable improvement of mechanical properties compared to the unfilled blend. In order to improve the bonding between the polymer blend and the filler, the HA used was chemically treated with a coupling agent known as 3-(trimethoxysiyl) propyl methacrylate and the treated HA was mixed into the blend. The effect of mixing the blend with silane-treated HA also led to an overall improvement of mechanical properties.
  11. Mashitah MD, Masitah H, Ramachandran KB
    Med J Malaysia, 2004 May;59 Suppl B:59-60.
    PMID: 15468818
    Streptococcus zooepidemicus (SZ) is an aerotolerant bacteria and its ability to survive under reactive oxidant challenge raises the question of the existence of a defense system. Thus growth, hyaluronic acid (HA) and hydrogen peroxide (H2O2) production by SZ in the presence of increasing concentration of Mn2+ were studied. The results suggested that the tested strain supported growth and HA production in cultures treated with 1 and 10 mM of Mn2+ regardless of H2O2 presence in the medium. This showed that SZ have acquired elaborate defense mechanisms to scavenge oxygen toxicity and thus protect cells from direct and indirect effect of this radical. In contrast, cells treated with 25 mM Mn2+ were sensitive, in which, the HA production was reduced considerably. Thus showing that the oxygen scavenger systems of the cells may be fully saturated at this concentration.
  12. Azran YM, Idris B, Rusnah M, Rohaida CH
    Med J Malaysia, 2004 May;59 Suppl B:79-80.
    PMID: 15468828
    The paper presents the effect of sintering temperature on the physical properties of porous hydroxyapatite (HAp In this study, the HAp was prepared using polymeric sponge techniques with different binder concentrations. The sintering process was carried out in air for temperature ranging from 1200 degrees C to 1600 degrees C. Different physical properties namely density and porosity were observed at different sintering temperatures. The HAp prepared with higher PVP binder showed a slightly decreased in apparent density with increasing sintering temperature, while those HAp prepared with lower PVP showed a slightly increase in apparent density with increasing sintering temperature. The total porosity was found to be approximately constant in the whole sintering temperature range. However, closed porosity decreases with increasing sintering temperature for HAp prepared by lower binder concentration. On the other hand, the HAp prepared by higher binder concentrations showed increasing closed porosity with increasing sintering temperature. Other features such as the influence of sintering temperatures on grain and strut would also be presented in this paper.
  13. Hee SL, Nik Intan NI, Fazan F
    Med J Malaysia, 2004 May;59 Suppl B:77-8.
    PMID: 15468827
    There is a great demand of Hydroxyapatite (HA) material in Orthopaedics and Dental applications due to its similarity to human bone. However, the lack of availability and due to high import cost of this material in Malaysia, research in producing synthetic HA locally is therefore timely. The use of local resources as the raw materials for the production of HA is also desirable in reducing the overall cost of HA. In this study, two HA materials were synthesised from different starting precursors, i.e. commercial pure Ca(OH)2 (HAS) and Ca(OH)2 directly from a local natural limestone deposit (HAL). Whereas a commercially available HA "Captal 60" (HAC) was used as reference. The synthesised powders obtained were fired at 1000 degrees C and at 1250 degrees C. Characterisation evaluations on bulk properties were carried out using XRD, SEM-EDX, ICP and FTIR. The results indicate that both HAS and HAL are comparable to HAC even at 1000 degrees C. Thus, the local natural limestone can be used to form HA. However, the overall appearance of these materials are quite different (HAC - blue, HAS - greenish and HAL - light green). The reasons for this and the subsequent mechanical and bioactive effects of these materials are currently being investigated.
  14. Ambrosio L, Battista S, Borzacchiello A, Borselli C, Causa F, De Santis R, et al.
    Med J Malaysia, 2004 May;59 Suppl B:71-2.
    PMID: 15468824
  15. Fazan F, Shahida KB
    Med J Malaysia, 2004 May;59 Suppl B:69-70.
    PMID: 15468823
    The paper presents a method of producing synthetic Hydroxyapatite (HA) Ca10(PO4)6(OH)2 and other apatites for biological use by solid-state reaction. The solid-state reaction involves mix-grinding dry powders of beta-tricalcium phosphate powder (TCP) and either calcium hydroxide (Ca(OH)2) or calcium carbonate (CaCO3) or combination thereof, from pure commercial chemicals or derived from natural limestone or from seashells, of total calcium/phosphorus molar ratio between 1.5 to 2.0, to particle size of less than 10 microns, and firing the resultant powder to temperature between 600 degrees C - 1250 degrees C in atmosphere or in controlled atmospheric condition. The resultant apatites formed were characterised using XRD, SEM-EDX and FTIR. The presented reaction process was found to be much simpler compared to conventional methods of producing synthetic apatites since it involves only dry mix-grinding of the reactants before firing at high temperatures based on the required levels of purity. It can also produce synthetic apatites with good reproducibility in a shorter time. Thus the presented method has a great industrial value.
  16. Di Silvio L, Gurav N, Sambrook R
    Med J Malaysia, 2004 May;59 Suppl B:89-90.
    PMID: 15468832
    The ability to regenerate new bone for skeletal use is a major clinical need. In this study, two novel porous calcium phosphate materials pure HA and biphasic HA/beta-Tricalcium phosphate (HA/beta -TCP) were evaluated as potential scaffolds for cell-seeded bone substitutes using human osteoblast-like cells (HOS) and primary human mesenchymal stem cells (hMSCs). A high rate of proliferation was observed on both scaffolds. A greater increase in alkaline phosphatase (ALP- an indicator of osteoblast differentiation) was observed on HA/beta -TCP compared to HA. This observation indicates that HA/TCP may play a role in inducing osteoblastic differentiation. Although further evaluation is required both materials show potential as innovative synthetic substitutes for tissue engineered scaffolds.
  17. Saidu MF, Mashita M, Khadijah K, Fazan F, Khalid KA
    Med J Malaysia, 2004 May;59 Suppl B:85-6.
    PMID: 15468831
    Hydroxyapatite is a calcium phosphate bioceramic that has been shown by many authors to be biocompatible with bioactive properties. It is widely accepted as the best synthetic material available for surgical use as a bone graft substitute. HA granules produced by AMREC-SIRIM from local materials underwent 5 types of sterilisation techniques with different ageing periods. Samples were tested for chemical and phase composition and microbial contamination before and after being sterilised. From the microbiological tests done, none of the unsterilised positive control yielded a positive culture. Results from X-Ray diffraction studies found that all the sterilisation techniques did not chemically degrade or structurally change the HA granules significantly.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links