Displaying publications 141 - 142 of 142 in total

Abstract:
Sort:
  1. Nordin ML, Abdul Kadir A, Zakaria ZA, Othman F, Abdullah R, Abdullah MN
    PMID: 28400849 DOI: 10.1155/2017/9368079
    This study was conducted to investigate the cytotoxicity and apoptosis effect of A. crispa extract and its solvent partition (ethyl acetate and aqueous extract) against Mus musculus mammary carcinoma cell line (4T1). The normal mouse fibroblast cell line (NIH3T3) was used as comparison for selective cytotoxicity properties. The cytotoxicity evaluation was assessed using MTT assay. AO/PI dual fluorescent staining assay and Annexin V-FITC were used for apoptosis analysis. Results showed that 80% methanol extract from leaves showed most promising antimammary cancer agent with IC50 value of 42.26 ± 1.82 μg/mL and selective index (SI) value of 10.22. Ethyl acetate was cytotoxic for both cancer and normal cell while aqueous extract exhibited poor cytotoxic effect. 4T1 cells labelled with AO/PI and Annexin V-FITC and treated with 80% methanol extract demonstrated that the extract induces apoptosis to 4T1 mammary cancer cells. In conclusion, 80% methanol extract of A. crispa was selectively cytotoxic towards 4T1 cells but less cytotoxic towards NIH3T3 cells and induced the cancerous cells into apoptotic stage as early as 6 hours.
  2. Zakaria ZA, Abdul Rahim MH, Roosli RAJ, Mohd Sani MH, Omar MH, Mohd Tohid SF, et al.
    Pain Res Manag, 2018;2018:9536406.
    PMID: 29686743 DOI: 10.1155/2018/9536406
    Methanolic extract of Clinacanthus nutans Lindau leaves (MECN) has been proven to possess antinociceptive activity that works via the opioid and NO-dependent/cGMP-independent pathways. In the present study, we aimed to further determine the possible mechanisms of antinociception of MECN using various nociceptive assays. The antinociceptive activity of MECN was (i) tested against capsaicin-, glutamate-, phorbol 12-myristate 13-acetate-, bradykinin-induced nociception model; (ii) prechallenged against selective antagonist of opioid receptor subtypes (β-funaltrexamine, naltrindole, and nor-binaltorphimine); (iii) prechallenged against antagonist of nonopioid systems, namely, α2-noradrenergic (yohimbine), β-adrenergic (pindolol), adenosinergic (caffeine), dopaminergic (haloperidol), and cholinergic (atropine) receptors; (iv) prechallenged with inhibitors of various potassium channels (glibenclamide, apamin, charybdotoxin, and tetraethylammonium chloride). The results demonstrated that the orally administered MECN (100, 250, and 500 mg/kg) significantly (p < 0.05) reversed the nociceptive effect of all models in a dose-dependent manner. Moreover, the antinociceptive activity of 500 mg/kg MECN was significantly (p < 0.05) inhibited by (i) antagonists of μ-, δ-, and κ-opioid receptors; (ii) antagonists of α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and (iii) blockers of different K+ channels (voltage-activated-, Ca2+-activated, and ATP-sensitive-K+ channels, resp.). In conclusion, MECN-induced antinociception involves modulation of protein kinase C-, bradykinin-, TRVP1 receptors-, and glutamatergic-signaling pathways; opioidergic, α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and nonopioidergic receptors as well as the opening of various K+ channels. The antinociceptive activity could be associated with the presence of several flavonoid-based bioactive compounds and their synergistic action with nonvolatile bioactive compounds.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links