Displaying publications 141 - 160 of 172 in total

Abstract:
Sort:
  1. Ikram M, Hayat S, Imran M, Haider A, Naz S, Ul-Hamid A, et al.
    Carbohydr Polym, 2021 Oct 01;269:118346.
    PMID: 34294353 DOI: 10.1016/j.carbpol.2021.118346
    In the present study, the novel Ag/cellulose nanocrystal (CNC)-doped CeO2 quantum dots (QDs) with highly efficient catalytic performance were synthesized using one pot co-precipitation technique, which were then applied in the degradation of methylene blue and ciprofloxacin (MBCF) in wastewater. Catalytic activity against MBCF dye was significantly reduced (99.3%) for (4%) Ag dopant concentration in acidic medium. For Ag/CNC-doped CeO2 vast inhibition domain of G-ve was significantly confirmed as (5.25-11.70 mm) and (7.15-13.60 mm), while medium- to high-concentration of CNC levels were calculated for G + ve (0.95 nm, 1.65 mm), respectively. Overall, (4%) Ag/CNC-doped CeO2 revealed significant antimicrobial activity against G-ve relative to G + ve at both concentrations, respectively. Furthermore, in silico molecular docking studies were performed against selected enzyme targets dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and DNA gyrase belonging to folate and nucleic acid biosynthetic pathway, respectively to rationalize possible mechanism behind bactericidal potential of CNC-CeO2 and Ag/CNC-CeO2.
  2. Yang J, Xu S, Wang W, Ran X, Ching YC, Sui X, et al.
    Carbohydr Polym, 2023 Jan 15;300:120253.
    PMID: 36372510 DOI: 10.1016/j.carbpol.2022.120253
    In this work, a systematic coupling study of silane coupling agent between starch and epoxidized soybean oils (ESO) was carried out. Starch was modified by 3-aminopropyl trimethoxy silane (APMS) with various contents of NaOH. The APMS-modified starch was incorporated with ESO to synthesize the bioplastics by solution casting. As demonstrated by the FTIR spectra, the hydrogen bond interactions among starch molecules were inhibited by the modification. This outcome provided higher interaction and compatibility of starch with ESO, as confirmed by FESEM. TGA showed that the thermal stability of starch decreased considerably after the silylation. In contrast, the produced bioplastics with silylated starch exhibited higher thermal stability than the control sample. Regarding the bioplastics, an obvious increase of tensile strength from 5.78 MPa to 9.29 MPa was obtained. This work suggested a simple and effective modification technique by APMS to improve compatibility of starch/ESO-based bioplastics with superior mechanical and thermal properties.
  3. Oladzadabbasabadi N, Mohammadi Nafchi A, Ariffin F, Wijekoon MMJO, Al-Hassan AA, Dheyab MA, et al.
    Carbohydr Polym, 2022 Feb 01;277:118876.
    PMID: 34893279 DOI: 10.1016/j.carbpol.2021.118876
    Current environmental concerns fostered a strong interest in extracting polymers from renewable feedstocks. Chitosan, a second most abundant polysaccharide after cellulose, may prove to be a promising green material owing to its renewability, inherent biodegradablity, natural availability, non-toxicity, and ease of modification. This review is intended to comprehensively overview the recent developments on the isolation of chitosan from chitin, its modification and applications as a reinforcing candidate for food packaging materials, emphasizing the scientific underpinnings arising from its physicochemical properties, antimicrobial, antioxidant, and antifungal activities. We review various chitosan-reinforced composites reported in the literature and comprehensively present intriguing mechanical and other functional properties. We highlight the contribution of these mechanically robust and responsive materials to extend the shelf-life and maintain the qualities of a wide range of food commodities. Finally, we assess critical challenges and highlight future opportunities towards understanding the versatile applications of chitosan nanocomposites.
  4. Lee WK, Ho CL
    Carbohydr Polym, 2022 Feb 01;277:118764.
    PMID: 34893214 DOI: 10.1016/j.carbpol.2021.118764
    Sulphated polysaccharides (SPs) are carbohydrate macromolecules with sulphate esters that are found among marine algae, seagrasses, mangroves and some terrestrial plants. The sulphate concentration in the ocean (28 mM) since ancient time could have driven the production of SPs in marine algae. SPs have a gelatinous property that can protect marine algae against desiccation and salinity stress. Agar and carrageenan are red algal SPs that are widely used as gelling agents in the food and pharmaceutical industries. The information on the SPs from freshwater and land plants are limited. In this review, we reviewed the taxonomic distribution and composition of SPs in different photosynthetic lineages, and explored the association of SP production in these diversified photosynthetic organisms with evolution history and environmental stresses. We also reviewed the genes/proteins involved in SP biosynthesis. Insights into SP biosynthetic machinery may shed light on the evolution that accompanied adaptation to life on earth.
  5. Mat Zin MI, Jimat DN, Wan Nawawi WMF
    Carbohydr Polym, 2022 Apr 01;281:119038.
    PMID: 35074115 DOI: 10.1016/j.carbpol.2021.119038
    We evaluate the physiochemical properties of chitin nanopaper derived from three commonly cultivated mushrooms: shiitake (Lentinula edodes), oyster (Pleurotus ostreatus), and enoki (Flammulina velutipes). Mild alkaline extraction of fungal sample yields higher chitin recovery per dry weight (23-35%) compared to crustacean source (9.7%). Our extract readily defibrillates into 15-20 nm width fiber after 5 min blending in domestic kitchen blender, implying a simple and cost-effective nanofiber preparation. Enoki nanopaper was found to be more crystalline and possess slightly higher modulus and tensile strength (Eenoki = 2.83 GPa, σenoki = 51 MPa) compared to oyster and shiitake nanopaper (Eoyster = 2.28 GPa, σoyster = 45 MPa; Eshiitake = 2.59 GPa, σshitake = 43 MPa). However, oyster nanopaper exhibit higher toughness (1.92 MJ/m3) and larger strain at break (5.63%) because of their relatively smaller fibers promote a denser fibrous network that can sustain and absorb higher external loading.
  6. Lai D, Zhou F, Zhou A, Hamzah SS, Zhang Y, Hu J, et al.
    Carbohydr Polym, 2022 Apr 15;282:119112.
    PMID: 35123747 DOI: 10.1016/j.carbpol.2022.119112
    In this study, a biodegradable photodynamic antibacterial film (Car-Cur) was prepared using casting method with κ-Carrageenan (κ-Car) as film-forming substrate and curcumin-β-cyclodextrin (Cur-β-CD) complex as photosensitizer. The comprehensive performance of this Car-Cur film was investigated. The obtained results showed that the concentration of Cur-β-CD was an important factor determining the properties of film including tensile strength (TS) elongation at break (EB), water vapor permeability (WVP), water content (WC) and thermal stability. When the concentration of Cur-β-CD is 1%, the film demonstrated the maximum TS and EB, increased thermal stability, with desirable WVP and WC. Furthermore, this film also showed good photodynamic antibacterial potential against Staphylococcus aureus and Escherichia coli upon irradiation of blue LED light. Moreover, the film can be degraded in the soil in one week. In conclusion, our results suggested Car-Cur photodynamic film could be developed as biodegradable antimicrobial packaging material for food preservation.
  7. Chen YW, Lee HV, Abd Hamid SB
    Carbohydr Polym, 2017 Dec 15;178:57-68.
    PMID: 29050615 DOI: 10.1016/j.carbpol.2017.09.029
    For the first time, a highly efficient Cr(NO3)3 catalysis system was proposed for optimization the yield and crystallinity of nanocellulose end product. A five-level three-factor central composite design coupled with response surface methodology was employed to elucidate parameters interactions between three design factors, namely reaction temperature (x1), reaction time (x2) and concentration of Cr(NO3)3 (x3) over a broad range of process conditions and determine the effect on crystallinity index and product yield. The developed models predicted the maximum nanocellulose yield of 87% at optimum process conditions of 70.6°C, 1.48h, and 0.48M Cr(NO3)3. At these conditions, the obtained nanocellulose presented high crystallinity index (75.3%), spider-web-like interconnected network morphology with the average width of 31.2±14.3nm. In addition, the yielded nanocellulose rendered a higher thermal stability than that of original cellulosic source and expected to be widely used as reinforcement agent in bio-nanocomposites materials.
  8. Elias N, Chandren S, Attan N, Mahat NA, Razak FIA, Jamalis J, et al.
    Carbohydr Polym, 2017 Nov 15;176:281-292.
    PMID: 28927609 DOI: 10.1016/j.carbpol.2017.08.097
    In this study, nanocellulose (NC) was successfully extracted from oil palm frond leaves (OPFL) using a combination of bleaching, alkaline treatment and acid hydrolysis. X-ray diffractogram revealed the extracted NC was crystalline with a crystallinity index of 70.2%. This indicates its suitability as nano-fillers for preparing the chitosan/nanocellulose (CS-NC) supports to immobilize Candida rugosa lipase (CRL) to produce the CRL/CS-NC biocatalysts. FTIR, FESEM and TGA characterizations of the CRL/CS-NC confirm the CRLs were successfully conjugated to the CS-NC supports. The air-dried CS-NC supports gave satisfactory immobilization of the CRLs (5.2mg/g) with the resultant CRL/CS-NCs catalysed conversions of ≥80% of butyl butyrate within 6h. Time course reaction profile revealed that 76.3% butyl butyrate conversion was achieved at 4h immobilization time using 3mg/mL of CRL/CS-NCs. NMR analyses on the purified butyl butyrate confirmed that the ester was successfully synthesized.
  9. Habiba U, Siddique TA, Talebian S, Lee JJL, Salleh A, Ang BC, et al.
    Carbohydr Polym, 2017 Dec 01;177:32-39.
    PMID: 28962774 DOI: 10.1016/j.carbpol.2017.08.115
    In this study, effect of degree of deacetylation on property and adsorption capacity of chitosan/polyvinyl Alcohol electrospun membrane has been investigated. Resulting nanofibers were characterized by FESEM, FTIR, XRD, TGA, tensile testing, weight loss test and adsorption test. FESEM result shows, finer nanofiber was fabricated from 42h hydrolyzed chitosan and PVA blend solution. FTIR and XRD result showed a strong interaction between chitosan and polyvinyl alcohol. Higher tensile strength was observed for the nanofiber having 42h hydrolyzed chitosan. Blend solution of chitosan/PVA having low DD chitosan had higher viscosity. The nanofibrous membrane was stable in distilled water, acidic and basic medium. The isotherm study shows that the adsorption capacity (qm) of nanofiber containing higher DD chitosan was higher for Cr(VI). In contrary, the membrane containing chitosan with lower DD showed the higher adsorption capacity for Fe(III) and methyl orange. Moreover, the effect of DD on removal percentage of adsorbate was dependent on the initial concentration of the adsorbate.
  10. Zeimaran E, Pourshahrestani S, Pingguan-Murphy B, Kong D, Naveen SV, Kamarul T, et al.
    Carbohydr Polym, 2017 Nov 01;175:618-627.
    PMID: 28917909 DOI: 10.1016/j.carbpol.2017.08.038
    Blends of poly (1, 8-octanediol citrate) (POC) and chitosan (CS) were prepared through solution casting technique. Films with different component fractions (POC/CS: 100/0, 90/10, 80/20, 70/30, 60/40, and 0/100) were successfully prepared and characterized for their mechanical, thermal, structural and morphological properties as well as biocompatibility. The incorporation of CS to POC significantly increased tensile strength and elastic modulus and presented limited influences on pH variation which is important to the biocompatibility of biomaterial implants. The assessment of surface topography indicated that blending could enhance and control the surface roughness of the pure films. POC/CS blends well-supported human dermal fibroblast cells attachment and proliferation, and thus can be used for a range of tissue engineering applications.
  11. Yusuf SNF, Azzahari AD, Selvanathan V, Yahya R, Careem MA, Arof AK
    Carbohydr Polym, 2017 Feb 10;157:938-944.
    PMID: 27988011 DOI: 10.1016/j.carbpol.2016.10.032
    A binary salt system utilizing lithium iodide (LiI) as the auxiliary component has been introduced to the N-phthaloylchitosan (PhCh) based gel polymer electrolyte consisting of ethylene carbonate (EC), dimethylformamide (DMF), tetrapropylammonium iodide (TPAI), and iodine (I2) in order to improve the performance of dye-sensitized solar cell (DSSC) with efficiency of 6.36%, photocurrent density, JSC of 17.29mAcm-2, open circuit voltage, VOC of 0.59V and fill factor, FF of 0.62. This efficiency value is an improvement from the 5.00% performance obtained by the DSSC consisting of only TPAI single salt system. The presence of the LiI in addition to the TPAI improves the charge injection rates and increases the iodide contribution to the total conductivity and both factors contribute to the increase in efficiency of the DSSC. The interaction behavior between polymer-plasticizer-salt was thoroughly investigated using EIS, FTIR spectroscopy and XRD.
  12. Dasan YK, Bhat AH, Ahmad F
    Carbohydr Polym, 2017 Feb 10;157:1323-1332.
    PMID: 27987839 DOI: 10.1016/j.carbpol.2016.11.012
    The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend.
  13. Mohamed MA, W Salleh WN, Jaafar J, Ismail AF, Abd Mutalib M, Mohamad AB, et al.
    Carbohydr Polym, 2017 Feb 10;157:1892-1902.
    PMID: 27987909 DOI: 10.1016/j.carbpol.2016.11.078
    This research involves the rare utilisation of the kapok fibre (Ceiba pentandra) as a raw material for the fabrication of cellulose nanocrystal (CNC) and self-assembled CNC membranes. The isolation of CNC from Ceiba pentandra began with the extraction of cellulose via the chemical alkali extraction by using 5wt% NaOH, followed by the typical acidified bleaching method and, finally, the CNC production through acid hydrolysis with 60wt% H2SO4 at the optimum time of 60min. The prepared CNC was then employed for the preparation of self-assembled membrane through the water suspension casting evaporation technique. The obtained CNC membrane was characterised in terms of its composition, crystallinity, thermal stability, as well as, structural and morphological features with the use of several techniques including FTIR, XRD, AFM, TEM, FESEM, and TGA. The FESEM and AFM analyses had illustrated the achievement of a self-assembled CNC membrane with a smooth surface and a well-distributed nano-porous structure, with the porosity of 52.82±7.79%. In addition, the findings proved that the self-assembled CNC membrane displayed good adsorption capability indicated by the recorded efficiency of 79% and 85% for 10mg/L and 5mg/L of methylene blue in an aqueous solution, respectively.
  14. Habiba U, Siddique TA, Joo TC, Salleh A, Ang BC, Afifi AM
    Carbohydr Polym, 2017 Feb 10;157:1568-1576.
    PMID: 27987870 DOI: 10.1016/j.carbpol.2016.11.037
    A chitosan/polyvinyl alcohol (PVA)/zeolite composite was fabricated in this study. The composite was analyzed through field emission scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis, and weight loss test. FTIR and XRD results revealed a strong interaction among chitosan, PVA, and zeolite. Weight loss test results indicated that the composite was stable in acidic and basic media. Congo red was removed through flocculation, and the removal rate was 94% at an initial concentration of 100mg/L for a dose of 1g/L. The removal rate of methyl orange was controlled by adsorption at an initial concentration of less than 100mg/L. Flocculation occurred at high concentrations. The removal rate was also 94% at an initial concentration of 500mg/L for a dose of 5g/L. The adsorption behavior of the composite for the removal of methyl orange and Cr(VI) was described by using a pseudo-second-order kinetic model. The adsorption capacity of the composite for Cr(VI) was 450mg/g. Therefore, the synthesized composite exhibited versatility during the removal of dyes and heavy metals.
  15. Nawaz A, Wong TW
    Carbohydr Polym, 2017 Feb 10;157:906-919.
    PMID: 27988008 DOI: 10.1016/j.carbpol.2016.09.080
    This study investigated transdermal drug delivery mechanisms of chitosan nanoparticles with the synergistic action of microwave in skin modification. Chitosan nanoparticles, with free or conjugated 5-fluorouracil, were prepared by nanospray-drying technique. Their transdermal drug delivery profiles across untreated and microwave-treated skins (2450MHz 5min, 5+5min; 3985MHz 5min) were examined. Both constituent materials of nanoparticles and drug encapsulation were required to succeed transdermal drug delivery. The drug transport was mediated via nanoparticles carrying drug across the skin and/or diffusion of earlier released drug molecules from skin surfaces. The drug/nanoparticles transport was facilitated through constituent nanoparticles and microwave fluidizing protein/lipid domains of epidermis and dermis (OH, NH, CH, CN) and dermal trans-to-gauche lipid conformational changes. The microwave induced marked changes to the skin ceramide content homogeneity. The chitosan nanoparticles largely affected the palmitic acid and keratin domains. Combined microwave and nanotechnologies synergize transdermal drug delivery.
  16. Shariful MI, Sharif SB, Lee JJL, Habiba U, Ang BC, Amalina MA
    Carbohydr Polym, 2017 Feb 10;157:57-64.
    PMID: 27987964 DOI: 10.1016/j.carbpol.2016.09.063
    In this study, chitosan/poly (ethylene oxide) nanofibres were fabricated at different chitosan:PEO weight ratio by electrospinning process. The effects of chitosan/PEO composition onto adsorption capability for Cu(II), Zn(II) and Pb(II) ions were studied. Formation of beadless fibres were achieved at 60:40 chitosan:PEO ratio. Average fiber diameter, maximum tensile strength and the specific surface area of the beadless fibres were found to be 115±31nm, 1.58MPa and 218m2/g, respectively. Chitosan/PEO composition that produced beadless fibres tend to possess higher hydrophilicity and maximum specific surface area. These characteristics lead the beadless fibres to the maximum adsorption capability. Adsorption equilibrium data were analysed by Langmuir and Freundlich isotherm. Freundlich isotherm showed the better fit with the experimental data and proved the existence of the monolayer adsorption conditions. The maximum adsorption capacity of the beadless fibres for Cu(II), Zn(II) and Pb(II) ions were found to be 120, 117 and 108mgg-1, respectively.
  17. Chen YW, Lee HV, Abd Hamid SB
    Carbohydr Polym, 2017 Feb 10;157:1511-1524.
    PMID: 27987863 DOI: 10.1016/j.carbpol.2016.11.030
    Cellulose in nanostructures was successfully isolated from empty fruit bunch biomass via a novel one-pot oxidative-hydrolysis technique. The physicochemical properties of nanocellulose prepared via one-pot process have shown comparable characteristics as products isolated via conventional multistep purification approach (namely dewaxing, chlorite bleaching process, alkalization, and acid hydrolysis). The chemical composition study indicated that the one-pot oxidative-hydrolysis process successfully extracted cellulose (91.0%), with the remaining minority being hemicellulose and lignin (∼6%) in the final product. Crystallinity profile of one-pot treated product (80.3%) was higher than that of multistep isolated nanocellulose (75.4%), which indicated that the disorder region (amorphous) in cellulose fibers was successfully removed. In additional to that, the morphology study demonstrated that nanocellulose prepared by one-pot process rendered spider-web-like network nanostructure, with an average diameter of fibers at a range of 51.6±15.4nm. The nanocellulose product showed high thermal stability (320°C), which was ready for nanocomposite application. One-pot oxidative-hydrolysis technique is a simple and versatile route for the preparation of nanocellulose from complex biomass within 90°C and 6h period, with minimum wastewater as compared to the multistep process.
  18. R NFN, Nur Hanani ZA
    Carbohydr Polym, 2017 Feb 10;157:1479-1487.
    PMID: 27987859 DOI: 10.1016/j.carbpol.2016.11.026
    This study investigated the effects of different types of plant oil (olive oil, corn oil, soybean oil and sunflower oil) on the physical and mechanical properties of kappa-carrageenan films from Euchema cottoni species. The incorporation of plant oils increased the film thickness significantly (P<0.05). However, the moisture content, solubility and tensile strength of films decreased significantly (P<0.05) as plant oils were added. The incorporation of plant oils also contributed to a plasticizing effect, whereby the values for elongation at break increased significantly (P<0.05), from 22.3% to 108.8%. Higher oil content also led to carrageenan films with lower opacity, which contradicted with previous studies. In conclusion, the plant oils used in this research significantly improved film properties, thus demonstrating the potential of these materials to be used as food packaging films and coatings.
  19. Manimaran P, Senthamaraikannan P, Sanjay MR, Marichelvam MK, Jawaid M
    Carbohydr Polym, 2018 Feb 01;181:650-658.
    PMID: 29254019 DOI: 10.1016/j.carbpol.2017.11.099
    The exploration of new natural fibers in the field of polymer composites can contribute to increase the invention of natural reinforcements and expand their use in possible applications. In the present work, the physico-chemical, thermal, tensile and morphological properties of Furcraea foetida (FF) fiber are presented for the first time. Chemical analysis results shows that FF has relatively higher cellulose (68.35%) with lower hemicelluloses (11.46%) and lignin (12.32%). Structural analysis of FF was conducted by Fourier transform infrared and13C (CP-MAS) nuclear magnetic resonance spectroscopy. X-ray diffraction (XRD) analysis evidenced that FF has crystallinity index of 52.6% with crystalline size of 28.36nmThe surface morphology of FF was investigated by scanning electron microscopy (SEM), energy dispersive X-ray micro analyzer (EDX) and atomic force microscopy (AFM). The thermogravimetric analysis (TGA) reveals thermal constancy of the fiber upto 320.5°C with the kinetic activation energy of 66.64kJ/mol, which can be used as reinforcements in thermoplastic green composite whose working temperatures is below 300°C. The FF results were compared with those of other natural fibers, and indicated as a suitable alternative source for composite manufacture.
  20. Khan AS, Man Z, Bustam MA, Nasrullah A, Ullah Z, Sarwono A, et al.
    Carbohydr Polym, 2018 Feb 01;181:208-214.
    PMID: 29253965 DOI: 10.1016/j.carbpol.2017.10.064
    In the present research work, dicationic ionic liquids, containing 1,4-bis(3-methylimidazolium-1-yl) butane ([C4(Mim)2]) cation with counter anions [(2HSO4)(H2SO4)0], [(2HSO4)(H2SO4)2] and [(2HSO4)(H2SO4)4] were synthesised. ILs structures were confirmed using 1H NMR spectroscopy. Thermal stability, Hammett acidity, density and viscosity of ILs were determined. Various types of lignocellulosic biomass such as rubber wood, palm oil frond, bamboo and rice husk were converted into levulinic acid (LA). Among the synthesized ionic liquids, [C4(Mim)2][(2HSO4)(H2SO4)4] showed higher % yield of LA up to 47.52 from bamboo biomass at 110°C for 60min, which is the better yield at low temperature and short time compared to previous reports. Surface morphology, surface functional groups and thermal stability of bamboo before and after conversion into LA were studied using SEM, FTIR and TGA analysis, respectively. This one-pot production of LA from agro-waste will open new opportunity for the conversion of sustainable biomass resources into valuable chemicals.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links