Displaying publications 141 - 160 of 709 in total

Abstract:
Sort:
  1. Lo SK, Liew CS, Tey KS, Mekhilef S
    Sensors (Basel), 2019 Oct 09;19(20).
    PMID: 31600904 DOI: 10.3390/s19204354
    The advancement of the Internet of Things (IoT) as a solution in diverse application domains has nurtured the expansion in the number of devices and data volume. Multiple platforms and protocols have been introduced and resulted in high device ubiquity and heterogeneity. However, currently available IoT architectures face challenges to accommodate the diversity in IoT devices or services operating under different operating systems and protocols. In this paper, we propose a new IoT architecture that utilizes the component-based design approach to create and define the loosely-coupled, standalone but interoperable service components for IoT systems. Furthermore, a data-driven feedback function is included as a key feature of the proposed architecture to enable a greater degree of system automation and to reduce the dependency on mankind for data analysis and decision-making. The proposed architecture aims to tackle device interoperability, system reusability and the lack of data-driven functionality issues. Using a real-world use case on a proof-of-concept prototype, we examined the viability and usability of the proposed architecture.
  2. Hossain A, Islam MT, Almutairi AF, Singh MSJ, Mat K, Samsuzzaman M
    Sensors (Basel), 2020 Mar 01;20(5).
    PMID: 32121477 DOI: 10.3390/s20051354
    An Ultrawideband (UWB) octagonal ring-shaped parasitic resonator-based patch antenna for microwave imaging applications is presented in this study, which is constructed with a diamond-shaped radiating patch, three octagonal, rectangular slotted ring-shaped parasitic resonator elements, and partial slotting ground plane. The main goals of uses of parasitic ring-shaped elements are improving antenna performance. In the prototype, various kinds of slots on the ground plane were investigated, and especially rectangular slots and irregular zigzag slots are applied to enhance bandwidth, gain, efficiency, and radiation directivity. The optimized size of the antenna is 29 × 24 × 1.5 mm3 by using the FR-4 substrate. The overall results illustrate that the antenna has a bandwidth of 8.7 GHz (2.80 ̶ 11.50 GHz) for the reflection coefficient S11 < -10 dB with directional radiation pattern. The maximum gain of the proposed prototype is more than 5.7 dBi, and the average efficiency over the radiating bandwidth is 75%. Different design modifications are performed to attain the most favorable outcome of the proposed antenna. However, the prototype of the proposed antenna is designed and simulated in the 3D simulator CST Microwave Studio 2018 and then effectively fabricated and measured. The investigation throughout the study of the numerical as well as experimental data explicit that the proposed antenna is appropriate for the Ultrawideband-based microwave-imaging fields.
  3. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H
    Sensors (Basel), 2007 Oct 11;7(10):2238-2250.
    PMID: 28903224 DOI: 10.3390/s7102238
    The fabrication of an optical biosensor by using stacked films where 3-methyl-2-benzothiazolinone hydrazone (MBTH) was immobilized in a hybrid nafion/sol-gelsilicate film and laccase in a chitosan film for the detection of phenolic compounds wasdescribed. Quinone and/or phenoxy radical product from the enzymatic oxidation ofphenolic compounds was allowed to couple with MBTH to form a colored azo-dye productfor spectrophometric detection. The biosensor demonstrated a linear response to catecholconcentration range of 0.5-8.0 mM with detection limit of 0.33 mM and response time of10 min. The reproducibility of the fabricated biosensor was good with RSD value of 5.3 %(n = 8) and stable for at least 2 months. The use of the hybrid materials of nafion/sol-gelsilicate to immobilize laccase has altered the selectivity of the enzyme to various phenoliccompounds such as catechol, guaicol, o-cresol and m-cresol when compared to the non-immobilized enzyme. When immobilized in this hybrid film, the biosensor response onlyto catechol and not other phenolic compounds investigated. Immobilization in this hybridmaterial has enable the biosensor to be more selective to catechol compared with the non-immobilized enzyme. This shows that by a careful selection of different immobilizationmatrices, the selectivity of an enzyme can be modified to yield a biosensor with goodselectivity towards certain targeted analytes.
  4. Rahim RA, Thiam CK, Rahiman MH
    Sensors (Basel), 2008 Mar 27;8(4):2082-2103.
    PMID: 27879811
    The use of a personal computer together with a Data Acquisition System (DAQ) as the processing tool in optical tomography systems has been the norm ever since the beginning of process tomography. However, advancements in silicon fabrication technology allow nowadays the fabrication of powerful Digital Signal Processors (DSP) at a reasonable cost. This allows this technology to be used in an optical tomography system since data acquisition and processing can be performed within the DSP. Thus, the dependency on a personal computer and a DAQ to sample and process the external signals can be reduced or even eliminated. The DSP system was customized to control the data acquisition process of 16x16 optical sensor array, arranged in parallel beam projection. The data collected was used to reconstruct the cross sectional image of the pipeline conveyor. For image display purposes, the reconstructed image was sent to a personal computer via serial communication. This allows the use of a laptop to display the tomogram image besides performing any other offline analysis.
  5. Mohammad R, Ahmad M, Heng LY
    Sensors (Basel), 2013 Aug 05;13(8):10014-26.
    PMID: 23921830 DOI: 10.3390/s130810014
    Chili hotness is very much dependent on the concentration of capsaicin present in the chili fruit. A new biosensor based on a horseradish peroxidase enzyme-capsaicin reaction mediated by ferrocene has been successfully developed for the amperometric determination of chili hotness. The amperometric biosensor is fabricated based on a single-step immobilization of both ferrocene and horseradish peroxidase in a photocurable hydrogel membrane, poly(2-hydroxyethyl methacrylate). With mediation by ferrocene, the biosensor could measure capsaicin concentrations at a potential 0.22 V (vs. Ag/AgCl), which prevented potential interference from other electroactive species in the sample. Thus a good selectivity towards capsaicin was demonstrated. The linear response range of the biosensor towards capsaicin was from 2.5-99.0 µM with detection limit of 1.94 µM. A good relative standard deviation (RSD) for reproducibility of 6.4%-9.9% was obtained. The capsaicin biosensor demonstrated long-term stability for up to seven months. The performance of the biosensor has been validated using a standard method for the analysis of capsaicin based on HPLC.
  6. Mahdin H, Abawajy J
    Sensors (Basel), 2011;11(10):9863-77.
    PMID: 22163730 DOI: 10.3390/s111009863
    Radio frequency identification (RFID) systems are emerging as the primary object identification mechanism, especially in supply chain management. However, RFID naturally generates a large amount of duplicate readings. Removing these duplicates from the RFID data stream is paramount as it does not contribute new information to the system and wastes system resources. Existing approaches to deal with this problem cannot fulfill the real time demands to process the massive RFID data stream. We propose a data filtering approach that efficiently detects and removes duplicate readings from RFID data streams. Experimental results show that the proposed approach offers a significant improvement as compared to the existing approaches.
  7. Ulianas A, Heng LY, Abu Hanifah S, Ling TL
    Sensors (Basel), 2012;12(5):5445-60.
    PMID: 22778594 DOI: 10.3390/s120505445
    An electrochemical microbiosensor for DNA has been fabricated based on new acrylic microspheres modified with reactive N-acryloxysuccinimide (NAS) functional groups. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesized in an emulsion form with a simple one-step photopolymerization technique. Aminated DNA probe was attached to the succinimde functional group of the acrylic microspheres via covalent bonding. The hybridization of the immobilized DNA probe with the complementary DNA was studied by differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, pH, type of ions, buffer concentrations, ionic strength, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a linear response range to target DNA over a wide concentration range of 1.0 × 10(-16) and 1.0 × 10(-8) M with a lower limit of detection (LOD) of 9.46 × 10(-17) M (R(2) = 0.97). This DNA microbiosensor showed good reproducibility with 2.84% RSD (relative standard deviation) (n = 3). Application of the NAS-modified acrylic microspheres in the construction of DNA microbiosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices.
  8. Mamat M, Samad SA, Hannan MA
    Sensors (Basel), 2011;11(6):6435-53.
    PMID: 22163964 DOI: 10.3390/s110606435
    This paper reports the design of an electronic nose (E-nose) prototype for reliable measurement and correct classification of beverages. The prototype was developed and fabricated in the laboratory using commercially available metal oxide gas sensors and a temperature sensor. The repeatability, reproducibility and discriminative ability of the developed E-nose prototype were tested on odors emanating from different beverages such as blackcurrant juice, mango juice and orange juice, respectively. Repeated measurements of three beverages showed very high correlation (r > 0.97) between the same beverages to verify the repeatability. The prototype also produced highly correlated patterns (r > 0.97) in the measurement of beverages using different sensor batches to verify its reproducibility. The E-nose prototype also possessed good discriminative ability whereby it was able to produce different patterns for different beverages, different milk heat treatments (ultra high temperature, pasteurization) and fresh and spoiled milks. The discriminative ability of the E-nose was evaluated using Principal Component Analysis and a Multi Layer Perception Neural Network, with both methods showing good classification results.
  9. Jeong J
    Sensors (Basel), 2011;11(7):6816-41.
    PMID: 22163987 DOI: 10.3390/s110706816
    This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure.
  10. Zainal-Mokhtar K, Mohamad-Saleh J
    Sensors (Basel), 2013;13(9):11385-406.
    PMID: 24064598 DOI: 10.3390/s130911385
    This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical Capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes.
  11. Futra D, Heng LY, Ahmad A, Surif S, Ling TL
    Sensors (Basel), 2015 May 28;15(6):12668-81.
    PMID: 26029952 DOI: 10.3390/s150612668
    A fluorescence-based fiber optic toxicity biosensor based on genetically modified Escherichia coli (E. coli) with green fluorescent protein (GFP) was developed for the evaluation of the toxicity of several hazardous heavy metal ions. The toxic metals include Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(III). The optimum fluorescence excitation and emission wavelengths of the optical biosensor were 400 ± 2 nm and 485 ± 2 nm, respectively. Based on the toxicity observed under optimal conditions, the detection limits of Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(III) that can be detected using the toxicity biosensor were at 0.04, 0.32, 0.46, 2.80, 100, 250, 400, 720 and 2600 μg/L, respectively. The repeatability and reproducibility of the proposed biosensor were 3.5%-4.8% RSD (relative standard deviation) and 3.6%-5.1% RSD (n = 8), respectively. The biosensor response was stable for at least five weeks, and demonstrated higher sensitivity towards metal toxicity evaluation when compared to a conventional Microtox assay.
  12. Hamzah HH, Yusof NA, Salleh AB, Bakar FA
    Sensors (Basel), 2011;11(8):7302-13.
    PMID: 22164018 DOI: 10.3390/s110807302
    Fabrication of a test strip for detection of benzoic acid was successfully implemented by immobilizing tyrosinase, phenol and 3-methyl-2-benzothiazolinone hydrazone (MBTH) onto filter paper using polystyrene as polymeric support. The sensing scheme was based on the decreasing intensity of the maroon colour of the test strip when introduced into benzoic acid solution. The test strip was characterized using optical fiber reflectance and has maximum reflectance at 375 nm. It has shown a highly reproducible measurement of benzoic acid with a calculated RSD of 0.47% (n = 10). The detection was optimized at pH 7. A linear response of the biosensor was obtained in 100 to 700 ppm of benzoic acid with a detection limit (LOD) of 73.6 ppm. At 1:1 ratio of benzoic acid to interfering substances, the main interfering substance is boric acid. The kinetic analyses show that, the inhibition of benzoic is competitive inhibitor and the inhibition constant (K(i)) is 52.9 ppm. The activity of immobilized tyrosinase, phenol, and MBTH in the test strip was fairly sustained during 20 days when stored at 3 °C. The developed test strip was used for detection of benzoic acid in food samples and was observed to have comparable results to the HPLC method, hence the developed test strip can be used as an alternative to HPLC in detecting benzoic acid in food products.
  13. Anisi MH, Abdullah AH, Razak SA, Ngadi MA
    Sensors (Basel), 2012 03 27;12(4):3964-96.
    PMID: 23443040 DOI: 10.3390/s120403964
    Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs) due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals) according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some) specific goal(s) depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals.
  14. Gharghan SK, Nordin R, Ismail M
    Sensors (Basel), 2015;15(5):11741-68.
    PMID: 26007728 DOI: 10.3390/s150511741
    In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach.
  15. Slaninova N, Fiedorova K, Selamat A, Danisova K, Kubicek J, Tkacz E, et al.
    Sensors (Basel), 2020 Jun 30;20(13).
    PMID: 32629993 DOI: 10.3390/s20133666
    The subject of the submitted work is the proposal of electrodes for the continual measurement of the glucose concentration for the purpose of specifying further hemodynamic parameters. The proposal includes the design of the electronic measuring system, the construction of the electrodes themselves and the functionality of the entire system, verified experimentally using various electrode materials. The proposed circuit works on the basis of micro-ammeter measuring the size of the flowing electric current and the electrochemical measurement method is used for specifying the glucose concentration. The electrode system is comprised of two electrodes embedded in a silicon tube. The solution consists of the measurement with three types of materials, which are verified by using three solutions with a precisely given concentration of glucose in the form of a mixed solution and enzyme glucose oxidase. For the testing of the proposed circuit and the selection of a suitable material, the testing did not take place on measurements in whole blood. For the construction of the electrodes, the three most frequently used materials for the construction of electrodes used in clinical practice for sensing biopotentials, specifically the materials Ag/AgCl, Cu and Au, were used. The performed experiments showed that the material Ag/AgCl, which had the greatest sensitivity for the measurement even without the enzyme, was the most suitable material for the electrode. This conclusion is supported by the performed statistical analysis. On the basis of the testing, we can come to the conclusion that even if the Ag/AgCl electrode appears to be the most suitable, showing high stability, gold-plated electrodes showed stability throughout the measurement similarly to Ag/AgCl electrodes, but did not achieve the same qualities in sensitivity and readability of the measured results.
  16. Mutashar S, Hannan MA, Samad SA, Hussain A
    Sensors (Basel), 2014;14(7):11522-41.
    PMID: 24984057 DOI: 10.3390/s140711522
    The use of wireless communication using inductive links to transfer data and power to implantable microsystems to stimulate and monitor nerves and muscles is increasing. This paper deals with the development of the theoretical analysis and optimization of an inductive link based on coupling and on spiral circular coil geometry. The coil dimensions offer 22 mm of mutual distance in air. However, at 6 mm of distance, the coils offer a power transmission efficiency of 80% in the optimum case and 73% in the worst case via low input impedance, whereas, transmission efficiency is 45% and 32%, respectively, via high input impedance. The simulations were performed in air and with two types of simulated human biological tissues such as dry and wet-skin using a depth of 6 mm. The performance results expound that the combined magnitude of the electric field components surrounding the external coil is approximately 98% of that in air, and for an internal coil, it is approximately 50%, respectively. It can be seen that the gain surrounding coils is almost constant and confirms the omnidirectional pattern associated with such loop antennas which reduces the effect of non-alignment between the two coils. The results also show that the specific absorption rate (SAR) and power loss within the tissue are lower than that of the standard level. Thus, the tissue will not be damaged anymore.
  17. Al-Ezzi A, Kamel N, Faye I, Gunaseli E
    Sensors (Basel), 2021 Jun 15;21(12).
    PMID: 34203578 DOI: 10.3390/s21124098
    Recent brain imaging findings by using different methods (e.g., fMRI and PET) have suggested that social anxiety disorder (SAD) is correlated with alterations in regional or network-level brain function. However, due to many limitations associated with these methods, such as poor temporal resolution and limited number of samples per second, neuroscientists could not quantify the fast dynamic connectivity of causal information networks in SAD. In this study, SAD-related changes in brain connections within the default mode network (DMN) were investigated using eight electroencephalographic (EEG) regions of interest. Partial directed coherence (PDC) was used to assess the causal influences of DMN regions on each other and indicate the changes in the DMN effective network related to SAD severity. The DMN is a large-scale brain network basically composed of the mesial prefrontal cortex (mPFC), posterior cingulate cortex (PCC)/precuneus, and lateral parietal cortex (LPC). The EEG data were collected from 88 subjects (22 control, 22 mild, 22 moderate, 22 severe) and used to estimate the effective connectivity between DMN regions at different frequency bands: delta (1-3 Hz), theta (4-8 Hz), alpha (8-12 Hz), low beta (13-21 Hz), and high beta (22-30 Hz). Among the healthy control (HC) and the three considered levels of severity of SAD, the results indicated a higher level of causal interactions for the mild and moderate SAD groups than for the severe and HC groups. Between the control and the severe SAD groups, the results indicated a higher level of causal connections for the control throughout all the DMN regions. We found significant increases in the mean PDC in the delta (p = 0.009) and alpha (p = 0.001) bands between the SAD groups. Among the DMN regions, the precuneus exhibited a higher level of causal influence than other regions. Therefore, it was suggested to be a major source hub that contributes to the mental exploration and emotional content of SAD. In contrast to the severe group, HC exhibited higher resting-state connectivity at the mPFC, providing evidence for mPFC dysfunction in the severe SAD group. Furthermore, the total Social Interaction Anxiety Scale (SIAS) was positively correlated with the mean values of the PDC of the severe SAD group, r (22) = 0.576, p = 0.006 and negatively correlated with those of the HC group, r (22) = -0.689, p = 0.001. The reported results may facilitate greater comprehension of the underlying potential SAD neural biomarkers and can be used to characterize possible targets for further medication.
  18. Al Qudah M, Mohamed A, Lutfi S
    Sensors (Basel), 2023 Mar 27;23(7).
    PMID: 37050571 DOI: 10.3390/s23073513
    Several studies have been conducted using both visual and thermal facial images to identify human affective states. Despite the advantages of thermal facial images in recognizing spontaneous human affects, few studies have focused on facial occlusion challenges in thermal images, particularly eyeglasses and facial hair occlusion. As a result, three classification models are proposed in this paper to address the problem of thermal occlusion in facial images, with six basic spontaneous emotions being classified. The first proposed model in this paper is based on six main facial regions, including the forehead, tip of the nose, cheeks, mouth, and chin. The second model deconstructs the six main facial regions into multiple subregions to investigate the efficacy of subregions in recognizing the human affective state. The third proposed model in this paper uses selected facial subregions, free of eyeglasses and facial hair (beard, mustaches). Nine statistical features on apex and onset thermal images are implemented. Furthermore, four feature selection techniques with two classification algorithms are proposed for a further investigation. According to the comparative analysis presented in this paper, the results obtained from the three proposed modalities were promising and comparable to those of other studies.
  19. Sa'don SNH, Jamaluddin MH, Kamarudin MR, Ahmad F, Yamada Y, Kamardin K, et al.
    Sensors (Basel), 2019 Nov 06;19(22).
    PMID: 31698830 DOI: 10.3390/s19224835
    The incoming 5G technology requires antennas with a greater capacity, wider wireless spectrum utilisation, high gain, and steer-ability. This is due to the cramped spectrum utilisation in the previous generation. As a matter of fact, conventional antennas are unable to serve the new frequency due to the limitations in fabrication and installation mainly for smaller sizes. The use of graphene material promises antennas with smaller sizes and thinner dimensions, yet capable of emitting higher frequencies. Hence, graphene antennas were studied at a frequency of 15 GHz in both single and array elements. The high-frequency antenna contributed to a large bandwidth and was excited by coplanar waveguide for easy fabrication on one surface via screen printing. The defected ground structure was applied in an array element to improve the radiation and increase the gain. The results showed that the printed, single element graphene antenna produced an impedance bandwidth, gain, and efficiency of 48.64%, 2.87 dBi, and 67.44%, respectively. Meanwhile, the array element produced slightly better efficiency (72.98%), approximately the same impedance bandwidth as the single element (48.98%), but higher gain (8.41 dBi). Moreover, it provided a beam width of 21.2° with scanning beam capability from 0° up to 39.05°. Thus, it was proved that graphene materials can be applied in 5G.
  20. Horiguchi T, Masui Y, Zan MSD
    Sensors (Basel), 2019 Mar 27;19(7).
    PMID: 30934806 DOI: 10.3390/s19071497
    Distributed strain and temperature can be measured by using local Brillouin backscatter in optical fibers based on the strain and temperature dependence of the Brillouin frequency shift. The technique of analyzing the local Brillion backscatter in the time domain is called Brillouin optical time domain reflectometry (BOTDR). Although the best spatial resolution of classic BOTDR remains at around 1 m, some recent BOTDR techniques have attained as high as cm-scale spatial resolution. Our laboratory has proposed and demonstrated a high-spatial-resolution BOTDR called phase-shift pulse BOTDR (PSP-BOTDR), using a pair of probe pulses modulated with binary phase-shift keying. PSP-BOTDR is based on the cross-correlation of Brillouin backscatter and on the subtraction of cross-correlations obtained from the Brillouin scatterings evoked by each phase-modulated probe pulse. Although PSP-BOTDR has attained 20-cm spatial resolution, the spectral analysis method of PSP-BOTDR has not been discussed in detail. This article gives in-depth analysis of the Brillouin backscatter and the correlations of the backscatters of the PSP-BOTDR. Based on the analysis, we propose new spectral analysis methods for PSP-BOTDR. The analysis and experiments show that the proposed methods give better frequency resolution than before.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links