During high-temperature refining of vegetable oils, 3-monochloropropanediol (3-MCPD) esters, possible carcinogens, are formed from acylglycerol in the presence of a chlorine source. To investigate organochlorine compounds in vegetable oils as possible precursors for 3-MCPD esters, we tested crude palm, soybean, rapeseed, sunflower, corn, coconut, and olive oils for the presence of organochlorine compounds. Having found them in all vegetable oils tested, we focused subsequent study on oil palm products. Analysis of the chlorine isotope mass pattern exhibited in high-resolution mass spectrometry enabled organochlorine compound identification in crude palm oils as constituents of wax esters, fatty acid, diacylglycerols, and sphingolipids, which are produced endogenously in oil palm mesocarp throughout ripening. Analysis of thermal decomposition and changes during refining suggested that these naturally present organochlorine compounds in palm oils and perhaps in other vegetable oils are precursors of 3-MCPD esters. Enrichment and dose-response showed a linear relationship to 3-MCPD ester formation and indicated that the sphingolipid-based organochlorine compounds are the most active precursors of 3-MCPD esters.
BACKGROUND: Studies from the West have demonstrated that ready-to-eat cereals (RTECs) are a common form of breakfast and more likely to be consumed by children. This study aimed to investigate the breakfast eating pattern and RTECs consumption among schoolchildren in Kuala Lumpur.
METHODS: In this cross-sectional study, a total of 382 schoolchildren, aged 10 and 11 years old, were recruited from seven randomly selected primary schools in Kuala Lumpur. Information on socio-demographics, breakfast eating patterns, and perceptions of RTECs and dietary intake (24-hour dietary recalls) were obtained.
RESULTS: Among the respondents, only 22% of them consumed breakfast on a regular basis. The most commonly eaten food by children at breakfast was bread (27.2%), followed by biscuits (22.2%) and RTECs (20.5%). The majority of them (93%) reported that they consumed RTECs sometimes during the week. Chocolate RTECs (34.1%), corn flake RTECs (30.3%), and RTECs coated with honey (25.1%) were the most popular RTECs chosen by children. Respondents who consumed RTECs showed a significantly higher intake in calories, carbohydrate, vitamin A, vitamin B1, vitamin B2, vitamin B3, folate, vitamin C, calcium, iron, and fibre (P < 0.05), compared to those who skipped breakfast and those who had breakfast foods other than RTECs.
CONCLUSION: The lower levels of breakfast consumption among schoolchildren in Kuala Lumpur need serious attention. RTEC is a nutritious food which is well accepted by a majority of the schoolchildren in Kuala Lumpur. Nutrition intervention should be conducted in the future to include a well-balanced breakfast with the utilisation of RTECs for schoolchildren.
KEYWORDS: Malaysia; breakfast; calorie; cereals; children
The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 is required for activation of nonribosomal peptide synthetases, including α-aminoadipate reductase (AAR) for lysine biosynthesis and polyketide synthases, enzymes that biosynthesize peptide and polyketide secondary metabolites, respectively. Deletion of the PPT1 gene, from the maize pathogen Cochliobolus heterostrophus and the rice pathogen Cochliobolus miyabeanus, yielded strains that were significantly reduced in virulence to their hosts. In addition, ppt1 mutants of C. heterostrophus race T and Cochliobolus victoriae were unable to biosynthesize the host-selective toxins (HST) T-toxin and victorin, respectively, as judged by bioassays. Interestingly, ppt1 mutants of C. miyabeanus were shown to produce tenfold higher levels of the sesterterpene-type non-HST ophiobolin A, as compared with the wild-type strain. The ppt1 strains of all species were also reduced in tolerance to oxidative stress and iron depletion; both phenotypes are associated with inability to produce extracellular siderophores biosynthesized by the nonribosomal peptide synthetase Nps6. Colony surfaces were hydrophilic, a trait previously associated with absence of C. heterostrophus Nps4. Mutants were decreased in asexual sporulation and C. heterostrophus strains were female-sterile in sexual crosses; the latter phenotype was observed previously with mutants lacking Nps2, which produces an intracellular siderophore. As expected, mutants were albino, since they cannot produce the polyketide melanin and were auxotrophic for lysine because they lack an AAR.
In the present study, a novel oleaginous Thraustochytrid containing a high content of docosahexaenoic acid (DHA) was isolated from a mangrove ecosystem in Malaysia. The strain identified as an Aurantiochytrium sp. by 18S rRNA sequencing and named KRS101 used various carbon and nitrogen sources, indicating metabolic versatility. Optimal culture conditions, thus maximizing cell growth, and high levels of lipid and DHA production, were attained using glucose (60 g l⁻¹) as carbon source, corn steep solid (10 g l⁻¹) as nitrogen source, and sea salt (15 g l⁻¹). The highest biomass, lipid, and DHA production of KRS101 upon fed-batch fermentation were 50.2 g l⁻¹ (16.7 g l⁻¹ day⁻¹), 21.8 g l⁻¹ (44% DCW), and 8.8 g l⁻¹ (40% TFA), respectively. Similar values were obtained when a cheap substrate like molasses, rather than glucose, was used as the carbon source (DCW of 52.44 g l⁻¹, lipid and DHA levels of 20.2 and 8.83 g l⁻¹, respectively), indicating that production of microbial oils containing high levels of DHA can be produced economically when the novel strain is used.