MATERIALS AND METHODS: A literature search was performed using Scopus, PubMed, Embase, and Cochrane databases following the Population Intervention Comparison Outcome (PICOS) model (Population: infertile patients with clinical varicocele; Intervention: VR [any technique]; Comparison: infertile patients with clinical varicocele that were untreated; Outcome: sperm concentration, sperm total count, progressive sperm motility, total sperm motility, sperm morphology, and semen volume; Study type: randomized controlled trials and observational studies).
RESULTS: A total of 1,632 abstracts were initially assessed for eligibility. Sixteen studies were finally included with a total of 2,420 infertile men with clinical varicocele (1,424 patients treated with VR vs. 996 untreated controls). The analysis showed significantly improved post-operative semen parameters in patients compared to controls with regards to sperm concentration (standardized mean difference [SMD] 1.739; 95% CI 1.129 to 2.349; p<0.001; I²=97.6%), total sperm count (SMD 1.894; 95% CI 0.566 to 3.222; p<0.05; I²=97.8%), progressive sperm motility (SMD 3.301; 95% CI 2.164 to 4.437; p<0.01; I²=98.5%), total sperm motility (SMD 0.887; 95% CI 0.036 to 1.738; p=0.04; I²=97.3%) and normal sperm morphology (SMD 1.673; 95% CI 0.876 to 2.470; p<0.05; I²=98.5%). All the outcomes showed a high inter-study heterogeneity, but the sensitivity analysis showed that no study was sensitive enough to change these results. Publication bias was present only in the analysis of the sperm concentration and progressive motility. No significant difference was found for the semen volume (SMD 0.313; 95% CI -0.242 to 0.868; I²=89.7%).
CONCLUSIONS: This study provides a high level of evidence in favor of a positive effect of VR to improve conventional semen parameters in infertile men with clinical varicocele. To the best of our knowledge, this is the first SRMA to compare changes in conventional semen parameters after VR with changes in parameters of a control group over the same period. This is in contrast to other SRMAs which have compared semen parameters before and after VR, without reference to a control group. Our findings strengthen the available evidence and have a potential to upgrade professional societies' practice recommendations favoring VR to improve conventional semen parameters in infertile men.
MATERIALS AND METHODS: An online global survey on clinical practices related to SDF was disseminated to reproductive clinicians, according to the CHERRIES checklist criteria. Management protocols for various conditions associated with SDF were captured and compared to the relevant recommendations in professional society guidelines and the appropriate available evidence. Expert recommendations and consensus on the management of infertile men with elevated SDF were then formulated and adapted using the Delphi method.
RESULTS: A total of 436 experts from 55 different countries submitted responses. As an initial approach, 79.1% of reproductive experts recommend lifestyle modifications for infertile men with elevated SDF, and 76.9% prescribe empiric antioxidants. Regarding antioxidant duration, 39.3% recommend 4-6 months and 38.1% recommend 3 months. For men with unexplained or idiopathic infertility, and couples experiencing recurrent miscarriages associated with elevated SDF, most respondents refer to ART 6 months after failure of conservative and empiric medical management. Infertile men with clinical varicocele, normal conventional semen parameters, and elevated SDF are offered varicocele repair immediately after diagnosis by 31.4%, and after failure of antioxidants and conservative measures by 40.9%. Sperm selection techniques and testicular sperm extraction are also management options for couples undergoing ART. For most questions, heterogenous practices were demonstrated.
CONCLUSIONS: This paper presents the results of a large global survey on the management of infertile men with elevated SDF and reveals a lack of consensus among clinicians. Furthermore, it demonstrates the scarcity of professional society guidelines in this regard and attempts to highlight the relevant evidence. Expert recommendations are proposed to help guide clinicians.
MATERIALS AND METHODS: The meta-analysis was performed according to PRISMA-P and MOOSE guidelines. A systematic search was performed in Scopus, PubMed, Cochrane, and Embase databases. Eligible studies were selected according to the PICOS model (Population: infertile male patients with clinical varicocele; Intervention: varicocele repair; Comparison: intra-person before-after varicocele repair; Outcome: conventional semen parameters; Study type: randomized controlled trials [RCTs], observational and case-control studies).
RESULTS: Out of 1,632 screened abstracts, 351 articles (23 RCTs, 292 observational, and 36 case-control studies) were included in the quantitative analysis. The before-and-after analysis showed significant improvements in all semen parameters after varicocele repair (except sperm vitality); semen volume: standardized mean difference (SMD) 0.203, 95% CI: 0.129-0.278; p<0.001; I²=83.62%, Egger's p=0.3329; sperm concentration: SMD 1.590, 95% CI: 1.474-1.706; p<0.001; I²=97.86%, Egger's p<0.0001; total sperm count: SMD 1.824, 95% CI: 1.526-2.121; p<0.001; I²=97.88%, Egger's p=0.0063; total motile sperm count: SMD 1.643, 95% CI: 1.318-1.968; p<0.001; I²=98.65%, Egger's p=0.0003; progressive sperm motility: SMD 1.845, 95% CI: 1.537%-2.153%; p<0.001; I²=98.97%, Egger's p<0.0001; total sperm motility: SMD 1.613, 95% CI 1.467%-1.759%; p<0.001; l2=97.98%, Egger's p<0.001; sperm morphology: SMD 1.066, 95% CI 0.992%-1.211%; p<0.001; I²=97.87%, Egger's p=0.1864.
CONCLUSIONS: The current meta-analysis is the largest to date using paired analysis on varicocele patients. In the current meta-analysis, almost all conventional semen parameters improved significantly following varicocele repair in infertile patients with clinical varicocele.