The Sine-Cosine algorithm (SCA) is a population-based metaheuristic algorithm utilizing sine and cosine functions to perform search. To enable the search process, SCA incorporates several search parameters. But sometimes, these parameters make the search in SCA vulnerable to local minima/maxima. To overcome this problem, a new Multi Sine-Cosine algorithm (MSCA) is proposed in this paper. MSCA utilizes multiple swarm clusters to diversify & intensify the search in-order to avoid the local minima/maxima problem. Secondly, during update MSCA also checks for better search clusters that offer convergence to global minima effectively. To assess its performance, we tested the MSCA on unimodal, multimodal and composite benchmark functions taken from the literature. Experimental results reveal that the MSCA is statistically superior with regards to convergence as compared to recent state-of-the-art metaheuristic algorithms, including the original SCA.
Team formation (TF) in social networks exploits graphs (i.e., vertices = experts and edges = skills) to represent a possible collaboration between the experts. These networks lead us towards building cost-effective research teams irrespective of the geolocation of the experts and the size of the dataset. Previously, large datasets were not closely inspected for the large-scale distributions & relationships among the researchers, resulting in the algorithms failing to scale well on the data. Therefore, this paper presents a novel TF algorithm for expert team formation called SSR-TF based on two metrics; communication cost and graph reduction, that will become a basis for future TF's. In SSR-TF, communication cost finds the possibility of collaboration between researchers. The graph reduction scales the large data to only appropriate skills and the experts, resulting in real-time extraction of experts for collaboration. This approach is tested on five organic and benchmark datasets, i.e., UMP, DBLP, ACM, IMDB, and Bibsonomy. The SSR-TF algorithm is able to build cost-effective teams with the most appropriate experts-resulting in the formation of more communicative teams with high expertise levels.
Feature selection (FS) is a critical step in many data science-based applications, especially in text classification, as it includes selecting relevant and important features from an original feature set. This process can improve learning accuracy, streamline learning duration, and simplify outcomes. In text classification, there are often many excessive and unrelated features that impact performance of the applied classifiers, and various techniques have been suggested to tackle this problem, categorized as traditional techniques and meta-heuristic (MH) techniques. In order to discover the optimal subset of features, FS processes require a search strategy, and MH techniques use various strategies to strike a balance between exploration and exploitation. The goal of this research article is to systematically analyze the MH techniques used for FS between 2015 and 2022, focusing on 108 primary studies from three different databases such as Scopus, Science Direct, and Google Scholar to identify the techniques used, as well as their strengths and weaknesses. The findings indicate that MH techniques are efficient and outperform traditional techniques, with the potential for further exploration of MH techniques such as Ringed Seal Search (RSS) to improve FS in several applications.