Displaying all 4 publications

Abstract:
Sort:
  1. Ab Rahim AH, Yunus NM, Bustam MA
    Molecules, 2023 Oct 14;28(20).
    PMID: 37894570 DOI: 10.3390/molecules28207091
    CO2 absorption has been driven by the need for efficient and environmentally sustainable CO2 capture technologies. The development in the synthesis of ionic liquids (ILs) has attracted immense attention due to the possibility of obtaining compounds with designated properties. This allows ILs to be used in various applications including, but not limited to, biomass pretreatment, catalysis, additive in lubricants and dye-sensitive solar cell (DSSC). The utilization of ILs to capture carbon dioxide (CO2) is one of the most well-known processes in an effort to improve the quality of natural gas and to reduce the green gases emission. One of the key advantages of ILs relies on their low vapor pressure and high thermal stability properties. Unlike any other traditional solvents, ILs exhibit high solubility and selectivity towards CO2. Frequently studied ILs for CO2 absorption include imidazolium-based ILs such as [HMIM][Tf2N] and [BMIM][OAc], as well as ILs containing amine groups such as [Cho][Gly] and [C1ImPA][Gly]. Though ILs are being considered as alternative solvents for CO2 capture, their full potential is limited by their main drawback, namely, high viscosity. Therefore, the hybridization of ILs has been introduced as a means of optimizing the performance of ILs, given their promising potential in capturing CO2. The resulting hybrid materials are expected to exhibit various ranges of chemical and physical characteristics. This review presents the works on the hybridization of ILs with numerous materials including activated carbon (AC), cellulose, metal-organic framework (MOF) and commercial amines. The primary focus of this review is to present the latest innovative solutions aimed at tackling the challenges associated with IL viscosity and to explore the influences of ILs hybridization toward CO2 capture. In addition, the development and performance of ILs for CO2 capture were explored and discussed. Lastly, the challenges in ILs hybridization were also being addressed.
  2. Ab Rahim AH, Abd Ghani N, Hasanudin N, Yunus NM, Azman NS
    Materials (Basel), 2022 Feb 08;15(3).
    PMID: 35161194 DOI: 10.3390/ma15031247
    This work presents an in-depth kinetic thermal degradation comparison between traditional monocationic and the newly developed dicationic ionic liquid (IL), both coupled with a bromide (Br-) anion by using non-isothermal thermogravimetric analysis. Thermal analyses of 1-butyl-1-methylpyrrolidinium bromide [C4MPyr][Br] and 1,4-bis(1-methylpyrrolidinium-1-yl)butane dibromide [BisC4MPyr][Br2] were conducted at a temperature range of 50-650 °C and subjected to various heating rates, which are 5, 10, 15, 20 and 25 °C/min. Thermogravimetric analysis revealed that dicationic IL, [BisC4MPyr][Br2] is less thermally stable compared to monocationic [C4MPyr][Br]. A detailed analysis of kinetic parameters, which are the activation energy (Ea) and pre-exponential factor (log A), was calculated by using Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO) and Starink. This study revealed that the average Ea and log A of [BisC4MPyr][Br2] are lower than [C4MPyr][Br], which may be contributed to by its low thermal stability. Conclusively, it proved that the Ea and log A of ILs are strongly related to the thermal stability of ILs.
  3. Zailani NHZO, Yunus NM, Ab Rahim AH, Bustam MA
    Molecules, 2022 Jan 27;27(3).
    PMID: 35164113 DOI: 10.3390/molecules27030851
    Ionic liquids, which are extensively known as low-melting-point salts, have received significant attention as the promising solvent for CO2 capture. This work presents the synthesis, thermophysical properties and the CO2 absorption of a series of ammonium cations coupled with carboxylate anions producing ammonium-based protic ionic liquids (PILs), namely 2-ethylhexylammonium pentanoate ([EHA][C5]), 2-ethylhexylammonium hexanoate ([EHA][C6]), 2-ethylhexylammonium heptanoate ([EHA][C7]), bis-(2-ethylhexyl)ammonium pentanoate ([BEHA][C5]), bis-(2-ethylhexyl)ammonium hexanoate ([BEHA][C6]) and bis-(2-ethylhexyl)ammonium heptanoate ([BEHA][C7]). The chemical structures of the PILs were confirmed by using Nuclear Magnetic Resonance (NMR) spectroscopy while the density (ρ) and the dynamic viscosity (η) of the PILs were determined and analyzed in a range from 293.15K up to 363.15K. The refractive index (nD) was also measured at T = (293.15 to 333.15) K. Thermal analyses conducted via a thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC) indicated that all PILs have the thermal decomposition temperature, Td of greater than 416K and the presence of glass transition, Tg was detected in each PIL. The CO2 absorption of the PILs was studied up to 29 bar at 298.15 K and the experimental results showed that [BEHA][C7] had the highest CO2 absorption with 0.78 mol at 29 bar. The CO2 absorption values increase in the order of [C5] < [C6] < [C7] anion regardless of the nature of the cation.
  4. Ab Rahim AH, Yunus NM, Jaffar Z, Allim MF, Othman Zailani NZ, Mohd Fariddudin SA, et al.
    RSC Adv, 2023 May 09;13(21):14268-14280.
    PMID: 37179994 DOI: 10.1039/d3ra01345f
    A series of ammonium-based protic ionic liquids (APILs) namely ethanolammonium pentanoate [ETOHA][C5], ethanolammonium heptanoate [ETOHA][C7], triethanolammonium pentanoate [TRIETOHA][C5], triethanolammonium heptanoate [TRIETOHA][C7], tributylammonium pentanoate [TBA][C5] and tributylammonium heptanoate [TBA][C7] was synthesized via proton transfer. Their structural confirmation and physiochemical properties namely thermal stability, phase transition, density, heat capacity (Cp) and refractive index (RI) have been determined. Specifically, [TRIETOHA] APILs have crystallization peaks ranging from -31.67 to -1.00 °C, owing to their large density values. A comparison study revealed the low Cp values of APILs in comparison to monoethanolamine (MEA) which could be advantageous for APILs to be used in CO2 separation during recyclability processes. Additionally, the performance of APILs toward CO2 absorption was investigated by using a pressure drop technique under a pressure range of 1-20 bar at 298.15 K. It was observed that [TBA][C7] recorded the highest CO2 absorption capacity with the value of 0.74 mole fraction at 20 bar. Additionally, the regeneration of [TBA][C7] for CO2 absorption was studied. Analysis of the measured CO2 absorption data showed marginal reduction in the mole fraction of CO2 absorbed between fresh and recycled [TBA][C7] thus proving the promising potential of APILs as good liquid absorbents for CO2 removal.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links