Displaying all 6 publications

Abstract:
Sort:
  1. Abd Aziz MA, Md Isa K, Ab Rashid R
    Waste Manag Res, 2017 Jun;35(6):647-655.
    PMID: 28431479 DOI: 10.1177/0734242X17697815
    This article aims to provide insights into the factors that contribute to the separation efficiency of solid particles. In this study, a pneumatic jigging technique was used to assess the separation of solid waste materials that consisted of copper, glass and rubber insulator. Several initial experiments were carried out to evaluate the strengths and limitations of the technique. It is found that despite some limitations of the technique, all the samples prepared for the experiments were successfully separated. The follow-up experiments were then carried out to further assess the separation of copper wire and rubber insulator. The effects of air flow and pulse rates on the separation process were examined. The data for these follow-up experiments were analysed using a sink float analysis technique. The analysis shows that the air flow rate was very important in determining the separation efficiency. However, the separation efficiency may be influenced by the type of materials used.
  2. Tagiling N, Ab Rashid R, Azhan SNA, Dollah N, Geso M, Rahman WN
    Heliyon, 2018 Oct;4(10):e00864.
    PMID: 30364574 DOI: 10.1016/j.heliyon.2018.e00864
    Proper dosimetry settings are crucial in radiotherapy to ensure accurate radiation dose delivery. This work evaluated scanning parameters as affecting factors in reading the dose-response of EBT2 and EBT3 radiochromic films (RCFs) irradiated with clinical photon and electron beams. The RCFs were digitised using Epson® Expression® 10000XL flatbed scanner and image analyses of net optical density (netOD) were conducted using five scanning parameters i.e. film type, resolution, image bit depth, colour to grayscale transformation and image inversion. The results showed that increasing spatial resolution and deepening colour depth did not improve film sensitivity, while grayscale scanning caused sensitivity reduction below than that detected in the Red-channel. It is also evident that invert and colour negative film type selection negated netOD values, hence unsuitable for scanning RCFs. In conclusion, choosing appropriate scanning parameters are important to maintain preciseness and reproducibility in films dosimetry.
  3. Annamalai N, Ab Rashid R, Saed H, Al-Smadi OA, Yassin B
    Front Psychol, 2022;13:869687.
    PMID: 35693525 DOI: 10.3389/fpsyg.2022.869687
    This phenomenological study investigated educators' lived experiences of teaching online in higher institutions in Malaysia. Data, which was generated through semi-structured interviews with 20 lecturers from three universities in the country, was analysed based on the thematic analysis approach guided by the Technological, Pedagogical, and Content Knowledge (TPACK)-self-efficacy framework. The findings revealed that after a year of teaching online, the potential of technology has been acknowledged by the educators after some trials and constraints were addressed. The domains related to Technology Content Knowledge (TCK), Technology Pedagogical Knowledge (TPK), and TPACK were evident in the findings. However, Pedagogical Content Knowledge (PCK) was not given emphasis, hence this manuscript argues that educators need to be constantly reminded of the significance of PCK. The findings discussed in this manuscript can be a helpful guide for educators when there is a need for them to teach online.
  4. Madanat H, Ab Rashid R, Hashmi UM, Alqaryouti MH, Mohamed M, Al Smadi OA
    Heliyon, 2024 Feb 29;10(4):e25766.
    PMID: 38370217 DOI: 10.1016/j.heliyon.2024.e25766
    Online engagement has assumed a pivotal role within educational pedagogy, particularly during the COVID-19 pandemic. This study delves into the perceptions of Jordanian English language educators regarding their preparedness for online teaching in the post-pandemic landscape. In this quantitative study, a group of 101 English language educators from Jordanian universities participated, and their responses were subjected to analysis through descriptive statistics. The findings of this analysis indicate that the respondents exhibited a moderate level of familiarity with technology and e-learning platforms, alongside a similarly moderate level of competence in managing their online courses. Furthermore, the study underscores a noteworthy gap in their exposure to online education, despite their considerable tenure in teaching English. Consequently, the study underscores the necessity for tailored training programs designed to comprehensively enhance the online teaching proficiency of English language educators, thereby facilitating a more effective virtual learning environment.
  5. Talik Sisin NN, Abdul Razak K, Zainal Abidin S, Che Mat NF, Abdullah R, Ab Rashid R, et al.
    Int J Nanomedicine, 2020;15:7805-7823.
    PMID: 33116502 DOI: 10.2147/IJN.S269214
    Purpose: This study aimed to quantify synergetic effects induced by bismuth oxide nanoparticles (BiONPs), cisplatin (Cis) and baicalein-rich fraction (BRF) natural-based agent on the reactive oxygen species (ROS) generation and radiosensitization effects under irradiation of clinical radiotherapy beams of photon, electron and HDR-brachytherapy. The combined therapeutic responses of each compound and clinical radiotherapy beam were evaluated on breast cancer and normal fibroblast cell line.

    Methods: In this study, individual BiONPs, Cis, and BRF, as well as combinations of BiONPs-Cis (BC), BiONPs-BRF (BB) and BiONPs-Cis-BRF (BCB) were treated to the cells before irradiation using HDR brachytherapy with 0.38 MeV iridium-192 source, 6 MV photon beam and 6 MeV electron beam. The individual or synergetic effects from the application of the treatment components during the radiotherapy were elucidated by quantifying the ROS generation and radiosensitization effects on MCF-7 and MDA-MB-231 breast cancer cell lines as well as NIH/3T3 normal cell line.

    Results: The ROS generated in the presence of Cis stimulated the most substantial amount of ROS compared to the BiONPs and BRF. Meanwhile, the combination of the components had induced the higher ROS levels for photon beam than the brachytherapy and electron beam. The highest ROS enhancement relative to the control is attributable to the presence of BC combination in MDA-MB-231 cells, in comparison to the BB and BCB combinations. The radiosensitization effects which were quantified using the sensitization enhancement ratio (SER) indicate the highest value by BC in MCF-7 cells, followed by BCB and BB treatment. The radiosensitization effects are found to be more prominent for brachytherapy in comparison to photon and electron beam.

    Conclusion: The BiONPs, Cis and BRF are the potential radiosensitizers that could improve the efficiency of radiotherapy to eradicate the cancer cells. The combination of these potent radiosensitizers might produce multiple effects when applied in radiotherapy. The BC combination is found to have the highest SER, followed by the BCB combination. This study is also the first to investigate the effect of BRF in combination with BiONPs (BB) and BC (BCB) treatments.

  6. Sisin NNT, Abdul Razak K, Zainal Abidin S, Che Mat NF, Abdullah R, Ab Rashid R, et al.
    Int J Nanomedicine, 2019;14:9941-9954.
    PMID: 31908451 DOI: 10.2147/IJN.S228919
    Purpose: The aim of this study was to investigate the potential of the synergetic triple therapeutic combination encompassing bismuth oxide nanoparticles (BiONPs), cisplatin (Cis), and high dose rate (HDR) brachytherapy with Ir-192 source in breast cancer and normal fibroblast cell line.

    Methods: In vitro models of breast cancer cell lines (MCF-7, MDA-MB-231) and normal fibroblast cell line (NIH/3T3) were employed. Cellular localization and cytotoxicity studies were conducted prior to inspection on the radiosensitization effects and generation of reactive oxygen species (ROS) on three proposed radiosensitizers: BiONPs, Cis, and BiONPs-Cis combination (BC). The optimal, non-cytotoxic concentration of BiONPs (0.5 mM) and the 25% inhibitory concentration of Cis (1.30 µM) were applied. The radiosensitization effects were evaluated by using a 0.38 MeV Iridium-192 HDR brachytherapy source over a prescribed dose range of 0 Gy to 4 Gy.

    Results: The cellular localization of BiONPs was visualized by light microscopy and accumulation of the BiONPs within the vicinity of the nuclear membrane was observed. Quantification of the sensitization enhancement ratio extrapolated from the survival curves indicates radiosensitization effects for MCF-7 and MDA-MB-231 when treated with BiONPs, Cis, and BC. However, NIH/3T3 cells exhibited contradictive behavior as it only reacted towards the BC combination. Nonetheless, the MCF-7 cell line loaded with BC shows the highest SER of 4.29. ROS production analysis, on the other hand, shows that Cis and BC radiosensitizers generated the highest free radicals in comparison to BiONPs alone.

    Conclusion: A BiONPs-Cis combination was unveiled as a novel approach that offers promising radiosensitization enhancement that will increase the efficiency of tumor control while preserving the normal tissue at a reduced dose. This data is the first precedent to prove the synergetic implication of BiONPs, Cis, and HDR brachytherapy that will be beneficial for future chemoradiotherapy strategies in cancer care.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links