Displaying all 4 publications

Abstract:
Sort:
  1. Haq IU, Khurshid A, Inayat R, Zhang K, Liu C, Ali S, et al.
    PLoS One, 2021;16(11):e0259749.
    PMID: 34752476 DOI: 10.1371/journal.pone.0259749
    The fall armyworm (Spodoptera frugiperda) is a major economic pest in the United States and has recently become a significant concern in African and Asian countries. Due to its increased resistance to current management strategies, including pesticides and transgenic corn, alternative management techniques have become more necessary. Currently, silicon (Si) is being used in many pest control systems due to its ability to increase plant resistance to biotic and abiotic factors and promote plant growth. The current experiments were carried out at the College of Plant Protection, Gansu Agricultural University, Lanzhou, China, to test the effect of Si on lifetable parameters and lipase activity of fall armyworm and vegetative and physiological parameters of maize plants. Two sources of Si (silicon dioxide: SiO2 and potassium silicate: K2SiO3) were applied on maize plants with two application methods (foliar application and soil drenching). The experiment results revealed that foliar applications of SiO2 and K2SiO3 significantly (P≤0.05) increased mortality percentage and developmental period and decreased larval and pupal biomass of fall armyworm. Similarly, both Si sources significantly (P≤0.05) reduced lipase activity of larvae, and fecundity of adults, whereas prolonged longevity of adults. Among plant parameters, a significant increase in fresh and dry weight of shoot, stem length, chlorophyll content, and antioxidant activity was observed with foliar applications of Si. Root fresh and dry weight was significantly (P ≤ 0.05) higher in plants treated with soil drenching of SiO2 and K2SiO3. Moreover, SiO2 performed better for all parameters as compared to K2SiO3 and control treatment. The study conclusively demonstrated a significant negative effect on various biological parameters of fall armyworm when plants were treated with Si, so it can be a promising strategy to control this pest.
  2. Ismanto A, Hadibarata T, Kristanti RA, Sugianto DN, Widada S, Atmodjo W, et al.
    Mar Pollut Bull, 2023 Nov;196:115563.
    PMID: 37797535 DOI: 10.1016/j.marpolbul.2023.115563
    This study aimed to address the pressing issue of plastic pollution in aquatic ecosystems by assessing the prevalence and distribution of microplastics (MPs) in water and riverbank sediments of the Pekalongan River, a vital water source in Indonesia. From the present findings, MP concentrations in water ranged from 45.2 to 99.1 particles/L, while sediment concentrations ranged from 0.77 to 1.01 particles/g. This study revealed that fragment and film MPs constituted 30.1 % and 25.4 % of the total, respectively, with MPs measuring <1 mm and constituting 51.4 % of the total. Colored MPs, particularly blue and black MPs, accounted for 34 % of the total. The primary polymer components, as determined via Fourier transform infrared spectroscopy, were identified as polystyrene, polyester, and polyamide. In response to the escalating plastic waste crisis caused by single-use plastics, Pekalongan's local government implemented refuse segregation and recycling programs as part of its efforts to transition toward zero-waste practices.
  3. Ismanto A, Hadibarata T, Sugianto DN, Zainuri M, Kristanti RA, Wisha UJ, et al.
    Mar Pollut Bull, 2023 Nov;196:115677.
    PMID: 37862842 DOI: 10.1016/j.marpolbul.2023.115677
    The main aim of this study was to assess the presence of microplastics in the water and sediments of the Surakarta city river basin in Indonesia. In order to accurately reflect the river basin, a deliberate selection process was employed to choose three separate sampling locations and twelve sampling points. The results of the study revealed that fragments and fibers were the primary types of microplastics seen in both water and sediment samples. Furthermore, a considerable percentage of microplastics, comprising 53.8 % of the total, had dimensions below 1 mm. Moreover, the prevailing hues identified in the water samples were blue and black, comprising 45.1 % of the overall composition. In contrast, same color categories accounted for 23.3 % of the microplastics found in the soil samples. The analysis of microplastic polymers was carried out utilizing ATR-FTIR spectroscopy, which yielded the identification of various types including polystyrene, silicone polymer, polyester, and polyamide.
  4. Gafforov Y, Bekić S, Yarasheva M, Mišković J, Živanović N, Chen JJ, et al.
    J Enzyme Inhib Med Chem, 2025 Dec;40(1):2461185.
    PMID: 39992291 DOI: 10.1080/14756366.2025.2461185
    This study investigates the mycochemical profile and biological activities of hydroethanolic (EtOH), chloroform (CHCl3), and hot water (H2O) extracts of Sanghuangporus lonicerinus from Uzbekistan. Antioxidant capacity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), NO, and FRAP assays, and in vitro hypoglycaemic effects were evaluated through α-amylase and α-glucosidase inhibition. Antiproliferative potential was explored by analysing the binding affinities of EtOH and H2O extracts to estrogen receptor α (ERα), ERβ, androgen receptor (AR), and glucocorticoid receptor (GR), with molecular docking providing structural insights. LC-MS/MS analysis revealed solvent-dependent phenolic profiles, with the EtOH extract containing the highest total phenolic content (143.15 ± 6.70 mg GAE/g d.w.) and the best antioxidant capacity. The EtOH extract showed significant hypoglycaemic effects, with 85.29 ± 5.58% inhibition of α-glucosidase and 41.21 ± 0.79% inhibition of α-amylase. Moderate ERβ binding suggests potential for estrogen-mediated cancer therapy, while strong AKR1C3 inhibition by the EtOH extract supports its therapeutic potential.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links