Protection of medium voltage (MV) overhead lines against the indirect effects of lightning is an important issue in Malaysia and other tropical countries. Protection of these lines against the indirect effects of lightning is a major concern and can be improved by several ways. The choice of insulator to be used for instance, between the glass, ceramic or polymer, can help to improve the line performance from the perspective of increasing the breakdown strength. In this paper, the electrical performance of a 10 kV polymer insulator under different conditions for impulse, weather and insulator angle with respect to a cross-arm were studied (both experimental and modelling) and the results were discussed accordingly. Results show that the weather and insulator angle (with respect to the cross-arm) are surprisingly influenced the values of breakdown voltage and leakage current for both negative and positive impulses. Therefore, in order to select a proper protection system for MV lines against lightning induced voltage, consideration of the local information concerning the weather and also the insulator angles with respect to the cross-arm are very useful for line stability and performance.
Located near the equator, Malaysia is a country with one of the highest lightning densities in the world. Lightning contributes to 70% of the power outages in Malaysia and affects power equipment, automated network systems, causes data losses and monetary losses in the nation. Therefore, consideration of insulator evaluation under lightning impulses can be crucial to evaluate and attempt to overcome this issue. This paper presents a new approach to increase the electrical performance of polymer insulators using a Room Temperature Vulcanisation (RTV) coating. The evaluation involves three different settings of polymer insulator, namely uncoated, RTV type 1, and RTV type 2 upper surface coatings. All the insulators were tested under three different conditions as dry, clean wet and salty under different impulse polarities using the even-rising test method. The voltage breakdown for each test was recorded. From the experiment, it was found that the effectiveness of the RTV coating application became apparent when tested under salty or polluted conditions. It increased the voltage withstand capabilities of the polymer insulator up to 50% from the basic uncoated insulator. Under dry and clean conditions, the RTV coating provided just a slight increase of the breakdown voltage. The increase in voltage breakdown capability decreased the probability of surface discharge and dry band arcing that could cause degradation of the polymeric material housing. The RTV type 1 coating was found to be more effective when performing under a lightning impulse. The findings might help the utility companies improve the performance of their insulators in order to increase power system reliability.
The demand for composite materials in high-voltage electrical insulation is escalating over the last decades. In the power system, the composite glass-fiber-reinforced polymer has been used as an alternative to wood and steel crossarm structures due to its superior properties. As a composite, the material is susceptible to multi-aging factors, one of which is the electrical stress caused by continuous and temporary overvoltage. In order to achieve a better insulation performance and higher life expectancy, the distribution of the stresses should firstly be studied and understood. This paper focuses on the simulation work to better understand the stress distribution of the polyurethane foam-filled glass-fiber-reinforced polymer crossarm due to the lightning transient injection. A finite-element-based simulation was carried out to investigate the behavior of the electric field and voltage distribution across the sample using an Ansys Maxwell 3D. Electrical stresses at both outer and inner surfaces of the crossarm during the peak of lightning were analyzed. Analyses on the electric field and potential distribution were performed at different parts of the crossarm and correlated to the physical characteristics and common discharge location observed during the experiment. The results of the electric field on the crossarm indicate that both the outer and internal parts of the crossarm were prone to high field stress.