Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Gholizadeh H, Osman NA, Eshraghi A, Abd Razak NA
    Biomed Eng Online, 2014;13:89.
    PMID: 24981801 DOI: 10.1186/1475-925X-13-89
    Prosthesis suspension systems can alter the distribution of pressure within the prosthetic socket. This study evaluates a new suspension system for lower limb prostheses, and aims to compare the interface pressure and amputees' satisfaction with the new system compared with a common prosthetic suspension system (pin/lock).
  2. Abd Razak NA, Abu Osman NA, Wan Abas WA
    Disabil Rehabil Assist Technol, 2013 May;8(3):255-60.
    PMID: 22830946 DOI: 10.3109/17483107.2012.704654
    This study examined the kinematic differences between a body-powered prosthesis and a biomechatronics prosthesis as a transradial amputee performed activities that involve flexion/extension and supination/pronation of the wrist.
  3. Ghazali MF, Abd Razak NA, Abu Osman NA, Gholizadeh H
    Turk J Phys Med Rehabil, 2018 Sep;64(3):268-276.
    PMID: 31453521 DOI: 10.5606/tftrd.2018.1668
    Objectives: This study aims to assess the level of awareness of transtibial amputee patients on stump contractures and their compliance with efforts implemented to prevent the condition.

    Patients and methods: This study included 50 unilateral transtibial amputees (26 males, 24 females; mean age 55.4±14.7 years; range, 18 to 78 years) who met the respondent criteria of the study. The respondents were randomly selected and were issued with a questionnaire.

    Results: The majority of the transtibial amputees were aware of stump contracture complications. It was found that they also preferred methods of prevention which required less effort, was cost-effective, and were also practical.

    Conclusion: More focus should be placed on contracture prevention methods which were most complied with by the patients. This is because the effectiveness of a prevention method is highly influenced by patients' compliance with the method. Patients with a higher risk of developing stump contractures should be also given more attention in post-amputation care.

  4. Hashim NA, Abd Razak NA, Gholizadeh H, Abu Osman NA
    JMIR Serious Games, 2021 Feb 04;9(1):e17017.
    PMID: 33538698 DOI: 10.2196/17017
    BACKGROUND: Brain plasticity is an important factor in prosthesis usage. This plasticity helps with brain adaptation to learn new movement and coordination patterns needed to control a prosthetic hand. It can be achieved through repetitive muscle training that is usually very exhausting and often results in considerable reduction in patient motivation. Previous studies have shown that a playful concept in rehabilitation can increase patient engagement and perseverance.

    OBJECTIVE: This study investigated whether the inclusion of video games in the upper limb amputee rehabilitation protocol could have a beneficial impact for muscle preparation, coordination, and patient motivation among individuals who have undergone transradial upper limb amputation.

    METHODS: Ten participants, including five amputee participants and five able-bodied participants, were enrolled in 10 1-hour sessions within a 4-week rehabilitation program. In order to investigate the effects of the rehabilitation protocol used in this study, virtual reality box and block tests and electromyography (EMG) assessments were performed. Maximum voluntary contraction was measured before, immediately after, and 2 days after interacting with four different EMG-controlled video games. Participant motivation was assessed with the Intrinsic Motivation Inventory (IMI) questionnaire and user evaluation survey.

    RESULTS: Survey analysis showed that muscle strength and coordination increased at the end of training for all the participants. The results of Pearson correlation analysis indicated that there was a significant positive association between the training period and the box and block test score (r8=0.95, P

  5. Sobh KNM, Abd Razak NA, Abu Osman NA
    Proc Inst Mech Eng H, 2021 Apr;235(4):419-427.
    PMID: 33517847 DOI: 10.1177/0954411920985753
    Electromyography signal has been used widely as input for prosthetic's leg movements. C-Leg, for example, is among the prosthetics devices that use electromyography as the main input. The main challenge facing the industrial party is the position of the electromyography sensor as it is fixed inside the socket. The study aims to investigate the best positional parameter of electromyography for transtibial prosthetic users for the device to be effective in multiple movement activities and compare with normal human muscle's activities. DELSYS Trigno wireless electromyography instrument was used in this study to achieve this aim. Ten non-amputee subjects and two transtibial amputees were involved in this study. The surface electromyography signals were recorded from two anterior and posterior below the knee muscles and above the knee muscles, respectively: tibial anterior and gastrocnemius lateral head as well as rectus femoris and biceps femoris during two activities (flexion and extension of knee joint and gait cycle for normal walking). The result during flexion and extension activities for gastrocnemius lateral head and biceps femoris muscles was found to be more useful for the control subjects, while the tibial anterior and also gastrocnemius lateral head are more active for amputee subjects. Also, during normal walking activity for biceps femoris and gastrocnemius lateral head, it was more useful for the control subjects, while for transtibial amputee subject-1, the rectus femoris was the highest signal of the average normal walking activity (0.0001 V) compared to biceps femoris (0.00007 V), as for transtibial amputee subject-2, the biceps femoris was the highest signals of the average normal walking activity (0.0001 V) compared to rectus femoris (0.00004 V). So, it is difficult to rely entirely on the static positioning of the electromyography sensor within the socket as there is a possibility of the sensor to contact with inactive muscle, which will be a gap in the control, leading to a decrease in the functional efficiency of the powered prostheses.
  6. Mohd Jai NA, Mat Rosly M, Abd Razak NA
    Games Health J, 2021 Apr;10(2):73-82.
    PMID: 33297818 DOI: 10.1089/g4h.2020.0078
    Objective: Studies investigating the effects of exergaming in available platforms are still limited. This review aims to systematically identify available studies on physiological intensities of exergaming boxing in able-bodied adults and recategorize them based on different platforms or environments. The meta-analysis further analyzes the physiological responses during exergaming boxing into a set of pooled data for any evidence of outliers, heterogeneity, or publication bias. Materials and Methods: A systematic search was conducted by using databases from Google Scholar, PubMed, and Web of Science. Population, intervention, comparison, and outcomes (PICO) and preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were used in the study selection process for the review. Results: From the 1534 articles examined, 16 articles were included for further analyses. Results indicated that exergaming boxing exhibits a wide range of metabolic equivalent of task (MET) values and intensity, from very light to vigorous, with elements of heterogeneity and bias detected. The Xbox® Kinect boxing platform produced higher MET (mean = 5.3) compared with the Nintendo® Wii™ boxing (mean = 3.8). Conclusion: The results of this review suggest that boxing exergames can produce intensity-adequate physical activity among younger adults that are beneficial for cardiometabolic improvements, regardless of platforms used. Exergaming boxing may be employed as an effective exercise tool to increase energy expenditure and physical activity level in young adults.
  7. Lutfi SNN, Abd Razak NA, Ali S, Gholizadeh H
    Biomed Tech (Berl), 2021 Jun 25;66(3):317-322.
    PMID: 34062632 DOI: 10.1515/bmt-2019-0110
    Materials with low-strength and low-impedance properties, such as elastomers and polymeric foams are major contributors to prosthetic liner design. Polyethylene-Light (Pelite™) is a foam liner that is the most frequently used in prosthetics but it does not cater to all amputees' limb and skin conditions. The study aims to investigate the newly modified Foam Liner, a combination of two different types of foams (EVA + PU + EVA) as the newly modified Foam Liner in terms of compressive and tensile properties in comparison to Pelite™, polyurethane (PU) foam, and ethylene-vinyl acetate (EVA) foam. Universal testing machine (AGS-X, Shimadzu, Kyoto, Japan) has been used to measure the tensile and compressive stress. Pelite™ had the highest compressive stress at 566.63 kPa and tensile stress at 1145 kPa. Foam Liner fell between EVA and Pelite™ with 551.83 kPa at compression and 715.40 kPa at tension. PU foam had the lowest compressive stress at 2.80 kPa and tensile stress at 33.93 kPa. Foam Liner has intermediate compressive elasticity but has high tensile elasticity compared to EVA and Pelite™. Pelite™ remains the highest in compressive and tensile stiffness. Although it is good for amputees with bony prominence, constant pressure might result in skin breakdown or ulcer. Foam Liner would be the best for amputees with soft tissues on the residual limbs to accommodate movement.
  8. Hashim NA, Abd Razak NA, Abu Osman NA, Gholizadeh H
    Proc Inst Mech Eng H, 2018 Jan;232(1):3-11.
    PMID: 29199518 DOI: 10.1177/0954411917744585
    Body-powered prostheses are known for their advantages of cost, reliability, training period, maintenance, and proprioceptive feedback. This study primarily aims to analyze the work related to the improvement of upper limb body-powered prostheses prior to 2016. A systematic review conducted via the search of the Web of Science electronic database, Google Scholar, and Google Patents identified 155 papers from 1921 to 2016. Sackett's initial rules of evidence were used to determine the levels of evidence, and only papers categorized in the design and development category and patents were analyzed. A total of 40 papers in the sixth level of "Design and Development" of an upper limb body-powered prosthesis were found. Approximately 81% were categorized under mechanical alteration. Most papers were patent-type documents (48%), with the Journal of Rehabilitation Research and Development publishing most of the articles related to the design and development of body-powered prostheses. Papers in the scope of the study were published once every 3 years in almost a century, proving that only a few studies were conducted to improve body-powered arms compared with myoelectric technology. Further research should be carried out mainly in areas that have received less attention.
  9. Hamdan PNF, Hamzaid NA, Abd Razak NA, Hasnan N
    J Sport Health Sci, 2022 Nov;11(6):671-680.
    PMID: 33068748 DOI: 10.1016/j.jshs.2020.10.002
    BACKGROUND: Due to its clinically proven safety and health benefits, functional electrical stimulation (FES) cycling has become a popular exercise modality for individuals with spinal cord injury (SCI). Since its inception in 2013, the Cybathlon championship has been a platform for publicizing the potential of FES cycling in rehabilitation and exercise for individuals with SCI. This study aimed to evaluate the contribution of the Cybathlon championship to the literature on FES cycling for individuals with SCI 3 years pre and post the staging of the Cybathlon championship in 2016.

    METHODS: Web of Science, Scopus, ScienceDirect, IEEE Xplore, and Google Scholar databases were searched for relevant studies published between January 2013 and July 2019. The quality of the included studies was objectively evaluated using the Downs and Black checklist.

    RESULTS: A total of 129 articles on FES cycling were retained for analysis. A total of 51 articles related to Cybathlon were reviewed, and 14 articles were ultimately evaluated for the quality. In 2017, the year following the Cybathlon championship, Web of Science cited 23 published studies on the championship, which was almost 5-fold more than that in 2016 (n = 5). Training was most often reported as a topic of interest in these studies, which mostly (76.7%) highlighted the training parameters of interest to participating teams in their effort to maximize their FES cycling performance during the Cybathlon championship.

    CONCLUSION: The present study indicates that the Cybathlon championship in 2016 contributed to the number of literature published in 2017 on FES cycling for individuals with SCI. This finding may contribute to the lessons that can be learned from participation in the Cybathlon and potentially provide additional insights into research in the field of race-based FES cycling.

  10. Nik Zainuddin NAM, Abd Razak NA, Ab Karim MS
    Proc Inst Mech Eng H, 2023 Jun;237(6):741-748.
    PMID: 37131337 DOI: 10.1177/09544119231171787
    Composite materials used in the prosthetic and orthotic fields have helped improve the fabrication of sockets. Laminated sockets proved to be stronger than conventional thermoplastic sockets. The internal surface of a laminated socket plays an important role in patient comfort and is influenced by the material used to fabricate the socket. This study analyzes the internal surface profile of five different materials, that is, Dacron felt, fiberglass, Perlon stockinette, polyester stockinette, and elastic stockinette. All sockets were fabricated using an acrylic resin mix with hardener powder at a ratio of 100:3. The internal surface of the sockets was tested using the Mitutoyo SurfTest SJ-210 series for 20 trials. The overall Ra values were 2.318, 2.380, 2.682, 2.722, and 3.750 µm for fiberglass, polyester, Perlon, elastic stockinette, and Dacron felt. Dacron felt yielded the lowest Ra value, thus, producing the smoothest internal surface but requiring high skill and the correct technique during the fabrication of a laminated socket. Fiberglass is considered the best material for the internal surface despite not producing the lowest value individually but overall is the lowest and most consistent, indicating that it is easy to use to laminate prosthetic sockets.
  11. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014;13:134.
    PMID: 25208636 DOI: 10.1186/1475-925X-13-134
    Understanding of kinematics force applied at the elbow is important in many fields, including biomechanics, biomedical engineering and rehabilitation. This paper provides a comparison of a mathematical model of elbow joint using three different types of prosthetics for transhumeral user, and characterizes the forces required to overcome the passive mechanical of the prosthetics at the residual limb.
  12. Abd Rahman NH, Ibrahim AK, Hasikin K, Abd Razak NA
    J Healthc Eng, 2023;2023:3136511.
    PMID: 36860328 DOI: 10.1155/2023/3136511
    Medical device reliability is the ability of medical devices to endure functioning and is indispensable to ensure service delivery to patients. Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) technique was employed in May 2021 to evaluate existing reporting guidelines on medical device reliability. The systematic searching is conducted in eight different databases, including Web of Science, Science Direct, Scopus, IEEE Explorer, Emerald, MEDLINE Complete, Dimensions, and Springer Link, with 36 articles shortlisted from the year 2010 to May 2021. This study aims to epitomize existing literature on medical device reliability, scrutinize existing literature outcomes, investigate parameters affecting medical device reliability, and determine the scientific research gaps. The result of the systematic review listed three main topics on medical device reliability: risk management, performance prediction using Artificial Intelligence or machine learning, and management system. The medical device reliability assessment challenges are inadequate maintenance cost data, determining significant input parameter selection, difficulties accessing healthcare facilities, and limited age in service. Medical device systems are interconnected and interoperating, which increases complexity in assessing their reliability. To the best of our knowledge, although machine learning has become popular in predicting medical device performance, the existing models are only applicable to selected devices such as infant incubators, syringe pumps, and defibrillators. Despite the importance of medical device reliability assessment, there is no explicit protocol and predictive model to anticipate the situation. The problem worsens with the unavailability of a comprehensive assessment strategy for critical medical devices. Therefore, this study reviews the current state of critical device reliability in healthcare facilities. The present knowledge can be improved by adding new scientific data emphasis on critical medical devices used in healthcare services.
  13. Malaheem MS, Abd Razak NA, Abu Osman NA
    Prosthet Orthot Int, 2023 Nov 29.
    PMID: 38018968 DOI: 10.1097/PXR.0000000000000309
    Prosthetic alignment is a highly subjective process that is still based on clinical judgments. Thus, researchers have aimed their effort to quantify prosthetic alignment by providing an objective method that can assist and guide prosthetists in achieving transtibial (TT) prosthetic alignment. This systematic review aimed to examine the current literature on TT prosthetic alignment to scope the qualitative and quantitative methods designed to guide prosthetists throughout the TT prosthetic alignment process as well as evaluate the reported instruments and devices that are used to align TT prostheses and their clinical feasibility. A literature search, completed in June 2022, was performed using the following databases: Web of Science (Clarivate), SCOPUS (Elsevier), and Pub Med (Medline) with searching terms focusing on TT, prosthesis, prosthetist, prosthetic alignment, and questionnaires, resulting in 2790 studies being screened. Twenty-four studies have used quantitative methodologies, where sensor technologies were found to be the most frequently proposed technology combined with gait analysis tools and/or subjective assessments. A qualitative method that assists prosthetists throughout the alignment process was not found. In this systematic review, we presented diverse methods for guiding and assisting clinical decision-making regarding TT prosthetic alignment. However, most of these methods considered varied parameters, and there is a need for elaboration toward standardized methods, which would improve the prosthetic alignment clinical outcome.
  14. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014 Apr 23;13:49.
    PMID: 24755242 DOI: 10.1186/1475-925X-13-49
    BACKGROUND: The design and performance of a new development prosthesis system known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis system was implemented by replacing the Bowden tension cable of body powered prosthesis system using two ultrasonic sensors, two servo motors and microcontroller inside the prosthesis hand for transradial user.

    METHODS: The system components and hand prototypes involve the anthropometry, CAD design and prototyping, biomechatronics engineering together with the prosthetics. The modeler construction of the system develop allows the ultrasonic sensors that are placed on the shoulder to generate the wrist movement of the prosthesis. The kinematics of wrist movement, which are the pronation/supination and flexion/extension were tested using the motion analysis and general motion of human hand were compared. The study also evaluated the require degree of detection for the input of the ultrasonic sensor to generate the wrist movements.

    RESULTS: The values collected by the vicon motion analysis for biomechatronics prosthesis system were reliable to do the common tasks in daily life. The degree of the head needed to bend to give the full input wave was about 45°-55° of rotation or about 14 cm-16 cm. The biomechatronics wrist prosthesis gave higher degree of rotation to do the daily tasks but did not achieve the maximum degree of rotation.

    CONCLUSION: The new development of using sensor and actuator in generating the wrist movements will be interesting for used list in medicine, robotics technology, rehabilitations, prosthetics and orthotics.

  15. Ali S, Abu Osman NA, Arifin N, Gholizadeh H, Abd Razak NA, Abas WA
    ScientificWorldJournal, 2014;2014:769810.
    PMID: 25184154 DOI: 10.1155/2014/769810
    This study aimed to compare the effect of satisfaction and perceived problems between Pelite, Dermo with shuttle lock, and Seal-In X5 liners on the transtibial amputees.
  16. Abd Razak NA, Abu Osman NA, Kamyab M, Wan Abas WA, Gholizadeh H
    Am J Phys Med Rehabil, 2014 May;93(5):437-44.
    PMID: 24429510 DOI: 10.1097/PHM.0b013e3182a51fc2
    This report compares wrist supination and pronation and flexion and extension movements with the common body-powered prosthesis and a new biomechatronics prosthesis with regard to patient satisfaction and problems experienced with the prosthesis. Fifteen subjects with traumatic transradial amputation who used both prosthetic systems participated in this study. Each subject completed two questionnaires to evaluate their satisfaction and problems experienced with the two prosthetic systems. Satisfaction and problems with the prosthetic's wrist movements were analyzed in terms of the following: supination and pronation; flexion and extension; appearance; sweating; wounds; pain; irritation; pistoning; smell; sound; durability; and the abilities to open a door, hold a cup, and pick up or place objects. This study revealed that the respondents were more satisfied with the biomechatronics wrist prosthesis with regard to supination and pronation, flexion and extension, pain, and the ability to open a door. However, satisfaction with the prosthesis showed no significant differences in terms of sweating, wounds, irritation, pistoning, smell, sound, and durability. The abilities to hold a cup and pick up or place an object were significantly better with the body-powered prosthesis. The results of the survey suggest that satisfaction and problems with wrist movements in persons with transradial amputation can be improved with a biomechatronics wrist prosthesis compared with the common body-powered prosthesis.
  17. Ali S, Abu Osman NA, Eshraghi A, Gholizadeh H, Abd Razak NA, Wan Abas WA
    Clin Biomech (Bristol, Avon), 2013 Nov-Dec;28(9-10):994-9.
    PMID: 24161521 DOI: 10.1016/j.clinbiomech.2013.09.004
    Transtibial amputees encounter stairs and steps during their daily activities. The excessive pressure between residual limb/socket may reduce the walking capability of transtibial prosthetic users during ascent and descent on stairs. The purposes of the research were to evaluate the interface pressure between Dermo (shuttle lock) and Seal-In X5 (prosthetic valve) interface systems during stair ascent and descent, and to determine their satisfaction effects on users.
  18. Mehmood W, Abd Razak NA, Lau MS, Chung TY, Gholizadeh H, Abu Osman NA
    Proc Inst Mech Eng H, 2019 Feb;233(2):181-192.
    PMID: 30518308 DOI: 10.1177/0954411918816124
    Transtibial prosthetic sockets can be fabricated either by the conventional way, which involve using plaster of Paris bandages for casting. This will include modifications through hand, scanning and digital imaging of software. The aim of this study is to determine the circumferential profiles and conduct a volumetric analysis of a conventional socket that has fabrication using biosculptor technology. In doing this, a male transtibial amputee, age 28 years old with stable health condition was studied, where circumferential measurements were taken at intervals of 1 cm from the distal end of the residual limb to the medial tibial plateau level. Furthermore, the interior volume of both sockets and residuum were determined directly using water displacement method. A comparative value for the calculation of volume was also carried out using engineering mathematical equations. From these measurements, a total surface bearing transtibial sockets was fabricated to compare the changes of circumferential values of both sockets. The finding shows a percentage of the difference between the volume of the residual limb and conventional sockets to be 6.09%, whereas the biosculptor fabrication socket was 7.84% using the water displacement method. A comparison of circumferential profiles and volumetric analysis findings on the contrary showed that socket fabricated using the biosculptor technology is interchangeable with the conventional socket with more advantages, where biosculptor technology produces cheaper sockets and faster process with digital function in the procedure, unlike the conventional manual technique.
  19. Hashim NA, Abd Razak NA, Shanmuganathan T, Jaladin RA, Gholizadeh H, Abu Osman NA
    Eur J Phys Rehabil Med, 2022 Aug;58(4):612-620.
    PMID: 35044131 DOI: 10.23736/S1973-9087.22.06794-6
    INTRODUCTION: Virtual reality has recently become a popular application for rehabilitation and motor control research. This technology has emerged as a valid addition to conventional therapy and promises a successful rehabilitation. This study describes recent research related to the use of virtual reality applications in the rehabilitation of individuals with upper limb loss and to see whether this technology has enough proof of its applicability.

    EVIDENCE ACQUISITION: Searches were conducted with the Web of Science, Google Scholar, IEEE Xplore, and PubMed databases from inception up to September 2020. Articles that employed virtual reality in the rehabilitation of individual with upper limb loss were included in the research if it is written in English, the keyword exists in the title and abstract; it uses visual feedback in nonimmersive, semi-immersive, or fully immersive virtual environments. Data extraction was carried out by two independent researchers. The study was drafted using the Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols (PRISMA).

    EVIDENCE SYNTHESIS: A total of 38 articles met the inclusion criteria. Most studies were published between 2010 and 2020. Thirty-nine percent of the studies (N.=15), originates from North America; 55% of the studies (N.=21), were publicly funded; 61% of the studies (N.=24), was without disclosure of conflict of interest; 82% of the studies (N.=31), were cited in other studies. All the studies were published in journals and conference proceedings. Sixty-six percent of the studies (N.=25) has come out with positive outcome. The design studies were mostly case reports, case series, and poorly designed cohort studies that made up 55% (N.=21) of all the studies cited here.

    CONCLUSIONS: The research conducted on the use of virtual reality in individual with upper limb loss rehabilitation is of very low quality. The improvements to the research protocol are much needed. It is not necessary to develop new devices, but rather to assess existing devices with well-conducted randomized controlled trials.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links