Displaying all 4 publications

Abstract:
Sort:
  1. Radi M, Dezfouli B, Abu Bakar K, Abd Razak S
    ScientificWorldJournal, 2014;2014:789642.
    PMID: 24678277 DOI: 10.1155/2014/789642
    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications.
  2. Ali A, Abd Razak S, Othman SH, Mohammed A, Saeed F
    PLoS One, 2017;12(4):e0176223.
    PMID: 28445486 DOI: 10.1371/journal.pone.0176223
    With the rapid development of technology, mobile phones have become an essential tool in terms of crime fighting and criminal investigation. However, many mobile forensics investigators face difficulties with the investigation process in their domain. These difficulties are due to the heavy reliance of the forensics field on knowledge which, although a valuable resource, is scattered and widely dispersed. The wide dispersion of mobile forensics knowledge not only makes investigation difficult for new investigators, resulting in substantial waste of time, but also leads to ambiguity in the concepts and terminologies of the mobile forensics domain. This paper developed an approach for mobile forensics domain based on metamodeling. The developed approach contributes to identify common concepts of mobile forensics through a development of the Mobile Forensics Metamodel (MFM). In addion, it contributes to simplifying the investigation process and enables investigation teams to capture and reuse specialized forensic knowledge, thereby supporting the training and knowledge management activities. Furthermore, it reduces the difficulty and ambiguity in the mobile forensics domain. A validation process was performed to ensure the completeness and correctness of the MFM. The validation was conducted using two techniques for improvements and adjustments to the metamodel. The last version of the adjusted metamodel was named MFM 1.2.
  3. Ghaleb FA, Kamat MB, Salleh M, Rohani MF, Abd Razak S
    PLoS One, 2018;13(11):e0207176.
    PMID: 30457996 DOI: 10.1371/journal.pone.0207176
    The presence of motion artefacts in ECG signals can cause misleading interpretation of cardiovascular status. Recently, reducing the motion artefact from ECG signal has gained the interest of many researchers. Due to the overlapping nature of the motion artefact with the ECG signal, it is difficult to reduce motion artefact without distorting the original ECG signal. However, the application of an adaptive noise canceler has shown that it is effective in reducing motion artefacts if the appropriate noise reference that is correlated with the noise in the ECG signal is available. Unfortunately, the noise reference is not always correlated with motion artefact. Consequently, filtering with such a noise reference may lead to contaminating the ECG signal. In this paper, a two-stage filtering motion artefact reduction algorithm is proposed. In the algorithm, two methods are proposed, each of which works in one stage. The weighted adaptive noise filtering method (WAF) is proposed for the first stage. The acceleration derivative is used as motion artefact reference and the Pearson correlation coefficient between acceleration and ECG signal is used as a weighting factor. In the second stage, a recursive Hampel filter-based estimation method (RHFBE) is proposed for estimating the ECG signal segments, based on the spatial correlation of the ECG segment component that is obtained from successive ECG signals. Real-World dataset is used to evaluate the effectiveness of the proposed methods compared to the conventional adaptive filter. The results show a promising enhancement in terms of reducing motion artefacts from the ECG signals recorded by a cost-effective single lead ECG sensor during several activities of different subjects.
  4. Onwuegbuzie IU, Abd Razak S, Fauzi Isnin I, Darwish TSJ, Al-Dhaqm A
    PLoS One, 2020;15(8):e0237154.
    PMID: 32797055 DOI: 10.1371/journal.pone.0237154
    Data prioritization of heterogeneous data in wireless sensor networks gives meaning to mission-critical data that are time-sensitive as this may be a matter of life and death. However, the standard IEEE 802.15.4 does not consider the prioritization of data. Prioritization schemes proffered in the literature have not adequately addressed this issue as proposed schemes either uses a single or complex backoff algorithm to estimate backoff time-slots for prioritized data. Subsequently, the carrier sense multiple access with collision avoidance scheme exhibits an exponentially increasing range of backoff times. These approaches are not only inefficient but result in high latency and increased power consumption. In this article, the concept of class of service (CS) was adopted to prioritize heterogeneous data (real-time and non-real-time), resulting in an optimized prioritized backoff MAC scheme called Class of Service Traffic Priority-based Medium Access Control (CSTP-MAC). This scheme classifies data into high priority data (HPD) and low priority data (LPD) by computing backoff times with expressions peculiar to the data priority class. The improved scheme grants nodes the opportunity to access the shared medium in a timely and power-efficient manner. Benchmarked against contemporary schemes, CSTP-MAC attained a 99% packet delivery ratio with improved power saving capability, which translates to a longer operational lifetime.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links