Methods: Sprague-Dawley female rats were ovariectomized or sham-operated and divided into four groups: sham-operated rats fed a normal diet (ND); ovariectomized rats fed a normal diet (OVX-ND); sham-operated rats fed a HFSD; ovariectomized rats fed a high-fat style diet (OVX-HFSD). Mean blood pressure and fasting blood glucose were measured on weeks 0 and 10. The rats were sacrificed 10 weeks after initiation of ND or HFSD, the kidney and liver were harvested for histological, immunohistochemical and immunofluorescence studies.
Results: HFSD-fed rats presented a significantly greater adiposity index compared to their ND counterparts. Liver index, fasting blood glucose and mean blood pressure was increased in OVX-HFSD rats compared to HFSD rats at study terminal. Histological and morphometric studies showed focal interstitial mononuclear cell infiltration in the kidney of HFSD rats with mesangial expansion being greater in the OVX-HFSD rats. Both HFSD fed groups showed increased expressions of renal inflammatory markers, namely TNF-alpha, IL-6 and MCP-1, and infiltrating M1 macrophages with some influence of ovarian hormonal status. HFSD-feeding also caused hepatocellular steatosis which was aggravated in ovariectomized rats fed the same diet. Furthermore, hepatocellular ballooning was observed only in the OVX-HFSD rats. Similarly, HFSD-fed rats showed increased expressions of the inflammatory markers and M1 macrophage infiltration in the liver; however, only IL-6 expression was magnified in the OVX-HFSD.
Conclusion: Our data suggest that some of the structural changes and inflammatory response in the kidney and liver of rats fed a HFSD are exacerbated by ovariectomy.
OBJECTIVE: To evaluate the adverse effects of aqueous extract of CN leaves (AECNL).
MATERIALS AND METHODS: The oral toxicity of the AECNL was tested following Organisation for Economic Co-operation and Development (OECD) guidelines. Mutagenicity (Ames test) of AECNL was evaluated using TA98 and TA100 Salmonella typhimurium strains.
RESULTS: No mortality or morbidity was found in the animals upon single and repeated dose administration. However, significant body weight loss was observed at 2000 mg/kg during sub-chronic (90 d) exposure. In addition, increased eosinophil at 500 mg/kg and decreased serum alkaline phosphatase levels at 2000 mg/kg were observed in male rats. Variations in glucose and lipid profiles in treated groups were also observed compared to control. Ames test revealed no evidence of mutagenic or carcinogenic effects at 500 μg/well of AECNL.
CONCLUSION: The median lethal dose (LD50) of the AECNL is >5000 mg/kg and the no-observed-adverse-effect level is identified to be greater than 2000 mg/kg/day in 90-d study.