Oxidative stress plays a crucial role in Alzheimer's disease (AD) from its prodromal stage of mild cognitive impairment. There is an interplay between oxidative stress and the amyloid β (Aβ) cascade via various mechanisms including mitochondrial dysfunction, lipid peroxidation, protein oxidation, glycoxidation, deoxyribonucleotide acid damage, altered antioxidant defense, impaired amyloid clearance, inflammation and chronic cerebral hypoperfusion. Based on findings that indicate that oxidative stress plays a major role in AD, oxidative stress has been considered as a therapeutic target of AD. In spite of favorable preclinical study outcomes, previous antioxidative components, including a single antioxidative supplement such as vitamin C, vitamin E or their mixtures, did not clearly show any therapeutic effect on cognitive decline in AD. However, novel antioxidative supplements can be beneficial for AD patients. In this review, we summarize the interplay between oxidative stress and the Aβ cascade, and introduce novel antioxidative supplements expected to prevent cognitive decline in AD.
A unique taste-modifying activity that converts the sense of sourness to the sense of sweetness occurs in the fruit of the plant Curculigo latifolia, intrinsic to West Malaysia. The active component, known as curculin, is a protein consisting of two identical subunits. We have found a new taste-modifying protein, named neoculin, of the same origin. Both chemical analysis and cDNA cloning characterized neoculin as a heterodimeric protein consisting of an acidic, glycosylated subunit of 113 amino acid residues and a basic subunit that is the monomeric curculin itself.