Displaying all 4 publications

Abstract:
Sort:
  1. Abou Assi R, Abdulbaqi IM, Siok Yee C
    Pharmaceuticals (Basel), 2021 Mar 04;14(3).
    PMID: 33806527 DOI: 10.3390/ph14030215
    Current research indicates that the next silent epidemic will be linked to chronic liver diseases, specifically non-alcoholic fatty liver disease (NAFLD), which was renamed as metabolic-associated fatty liver disease (MAFLD) in 2020. Globally, MAFLD mortality is on the rise. The etiology of MAFLD is multifactorial and still incompletely understood, but includes the accumulation of intrahepatic lipids, alterations in energy metabolism, insulin resistance, and inflammatory processes. The available MAFLD treatment, therefore, relies on improving the patient's lifestyle and multidisciplinary pharmacotherapeutic options, whereas the option of surgery is useless without managing the comorbidities of the MAFLD. Nanotechnology is an emerging approach addressing MAFLD, where nanoformulations are suggested to improve the safety and physicochemical properties of conventional drugs/herbal medicines, physical, chemical, and physiological stability, and liver-targeting properties. A wide variety of liver nanosystems were constructed and delivered to the liver, only those that addressed the MAFLD were discussed in this review in terms of the nanocarrier classes, particle size, shape, zeta potential and offered dissolution rate(s), the suitable preparation method(s), excipients (with synergistic effects), and the suitable drug/compound for loading. The advantages and challenges of each nanocarrier and the focus on potential promising perspectives in the production of MAFLD nanomedicine were also highlighted.
  2. Khan AA, Abdulbaqi IM, Abou Assi R, Murugaiyah V, Darwis Y
    Nanoscale Res Lett, 2018 Oct 15;13(1):323.
    PMID: 30324291 DOI: 10.1186/s11671-018-2744-6
    Verapamil is a calcium channel blocker and highly effective in the treatment of hypertension, angina pectoris, and other diseases. However, the drug has a low bioavailability of 20 to 35% due to the first pass effect. The main objective of this study was to develop hybrid verapamil-dextran nanostructured lipid carriers (HVD-NLCs) in an attempt to increase verapamil cellular uptake. The formulations were successfully prepared by a high-shear homogenization method and statistically optimized using 24 full factorial design. The HVD-NLCs formulations were freeze-dried using trehalose as a cryoprotectant. The results showed that the optimized formula (VER-9) possessed a particle size (PS), polydispersity index (PDI), and the percentage of entrapment efficiency (%EE) of 192.29 ± 2.98, 0.553 ± 0.075, and 93.26 ± 2.66%, respectively. The incorporation of dextran sulfate in the formulation had prolonged the release of verapamil (~ 85% in 48 h) in the simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 6.8). The differential scanning calorimetry analysis showed no chemical interaction between verapamil and the excipients in the formulation. While wide-angle X-ray scattering studies demonstrated the drug in the amorphous form after the incorporation in the NLCs. The transmission electron microscopy and scanning electron microscopy images revealed that the nanoparticles had spherical shape. The cellular uptake study using Caco-2 cell line showed a higher verapamil uptake from HVD-NLCs as compared to verapamil solution and verapamil-dextran complex. The optimized formulation (VER-9) stored in the refrigerated condition (5 °C ± 3 °C) was stable for 6 months. In conclusion, the HVD-NLCs were potential carriers for verapamil as they significantly enhanced the cellular uptake of the drug.
  3. Abou Assi R, Abdulbaqi IM, Tan SM, Wahab HA, Darwis Y, Chan SY
    Drug Dev Ind Pharm, 2023 Sep 18.
    PMID: 37722711 DOI: 10.1080/03639045.2023.2256404
    OBJECTIVE: Breast cancer affects women globally, regardless of age or location. On the other hand, Tamoxifen (TXN), a class II biopharmaceutical drug is acting as a prophylactic/treating agent for women at risk of and/or with hormone receptor-positive breast cancer. However, its oral administration has life-threatening side effects, which have led researchers to investigate alternative delivery methods. One such method is transdermal drug delivery utilizing bile salts as penetration enhancers, aka Bilosomes.

    METHODS: Bilosomes formulations were optimized statistically for the outcome of vesicle shape, size, and entrapment efficiency using two types of bile, i.e. sodium taurocholate and sodium cholate. These bilosomes were then loaded into HPMC base gel and further characterized for their morphology, drug content, pH, viscosity, spreadability and eventually ex-vivo skin penetration and deposition studies.

    RESULTS: Findings showed that sodium cholate has superiority as a penetration enhancer over sodium taurocholate in terms of morphological characterizes, zeta potential, and cumulative amounts of tamoxifen permeated per unit area (15.13 ± 0.71 μg/cm2 and 6.51 ± 0.6 μg/cm2 respectively). In fact, bilosomes designed with sodium cholate provided around 9 folds of skin deposition compared to TXN non-bilosomal gel.

    CONCLUSION: Bilosomes gels could be a promising option for locally delivering tamoxifen to the breast through the skin, offering an encouraging transdermal solution.

  4. Abou Assi R, M Abdulbaqi I, Seok Ming T, Siok Yee C, A Wahab H, Asif SM, et al.
    Pharmaceutics, 2020 Nov 04;12(11).
    PMID: 33158058 DOI: 10.3390/pharmaceutics12111052
    Azithromycin (AZM) is a macrolide antibiotic used for the treatment of various bacterial infections. The drug is known to have low oral bioavailability (37%) which may be attributed to its relatively high molecular weight, low solubility, dissolution rate, and incomplete intestinal absorption. To overcome these drawbacks, liquid (L) and solid (S) self-emulsifying drug delivery systems (SEDDs) of AZM were developed and optimized. Eight different pseudo-ternary diagrams were constructed based on the drug solubility and the emulsification studies in various SEDDs excipients at different surfactant to co-surfactant (Smix) ratios. Droplet size (DS) < 150 nm, dispersity (Đ) ≤ 0.7, and transmittance (T)% > 85 in three diluents of distilled water (DW), 0.1 mM HCl, and simulated intestinal fluids (SIF) were considered as the selection criteria. The final formulations of L-SEDDs (L-F1(H)), and S-SEDDs (S-F1(H)) were able to meet the selection requirements. Both formulations were proven to be cytocompatible and able to open up the cellular epithelial tight junctions (TJ). The drug dissolution studies showed that after 5 min > 90% and 52.22% of the AZM was released from liquid and solid SEDDs formulations in DW, respectively, compared to 11.27% of the pure AZM, suggesting the developed SEDDs may enhance the oral delivery of the drug. The formulations were stable at refrigerator storage conditions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links