Brugada syndrome (BrS) is an inherited arrhythmogenic disorder marked by distinctive ST-segment elevations on electrocardiograms (ECG) and an increased risk of sudden cardiac death. Characterized by mutations primarily in the SCN5A gene, BrS disrupts cardiac ion channel function, leading to abnormal electrical activity and arrhythmias. Although BrS primarily affects young, healthy males, it poses significant diagnostic challenges due to its often concealed or intermittent ECG manifestations and clinical presentation that can mimic other cardiac disorders. Current management strategies focus on symptom control and prevention of sudden death, with implantable cardioverter-defibrillators (ICD) serving as the primary intervention for high-risk patients. However, the complications associated with ICDs and the lack of effective pharmacological options necessitate a cautious and personalized approach. Recent advancements in catheter ablation have shown promise, particularly for managing ventricular fibrillation (VF) storms and reducing ICD shocks. Additionally, pharmacological treatments such as quinidine have been effective in specific cases, though their use is limited by availability and side effects. This review highlights significant gaps in the BrS literature, particularly in terms of long-term management and novel therapeutic approaches. The importance of genetic screening and tailored treatment strategies to better identify and manage at-risk individuals is emphasized. The review aims to enhance the understanding of BrS and improve patient outcomes, advocating for a multidisciplinary approach to this complex syndrome.
Hypertrophic cardiomyopathy (HCM) is a hereditary cardiovascular condition marked by heart muscle thickening, fibrosis, and myocardial disorders. It is often inherited in an autosomal dominant pattern. Symptoms include dyspnea, fatigue, palpitations, dizziness, syncope, and an increased risk of sudden cardiac death (SCD). Genetic studies have identified many asymptomatic carriers, indicating a higher prevalence of HCM. Advances in genetic testing (GT) and novel therapies, such as cardiac myosin inhibitors, have significantly impacted the diagnosis and management of HCM. This integrative review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and aimed to synthesize information regarding the impact of GT on the diagnosis and management of HCM patients. An electronic search was conducted on May 17, 2024, across PubMed, Embase, Scopus, Web of Science, and Cochrane databases, covering January 2020 to May 2024. Inclusion criteria were studies involving adult HCM patients who underwent GT and follow-up. Exclusion criteria included non-human studies, pediatric cases, non-HCM-related GT, non-peer-reviewed articles, systematic reviews, conference abstracts, and editorials. From 1,155 articles identified, 42 met the inclusion criteria after applying filters and removing duplicates. GT identified pathogenic variants in a significant proportion of HCM patients, enhancing diagnostic accuracy and management. Key mutations were found in myosin binding protein C3 and myosin heavy chain 7 genes. GT facilitated personalized management strategies, including risk stratification for SCD and family screening. Patients with identified mutations often required closer monitoring and tailored treatments. GT has revolutionized the diagnosis and management of HCM. The integration of genetic data has improved risk stratification, facilitated early intervention, and enhanced patient outcomes. Despite these advances, challenges remain in identifying genetic variants in some patients, emphasizing the need for continuous improvement in genetic panels and diagnostic methods. This review highlights the significant role of GT in optimizing HCM care through precise risk assessment and tailored treatment strategies.
Long QT syndrome (LQTS) is a cardiac disorder characterized by prolonged repolarization of the heart's electrical cycle, which can be observed as an extended QT interval on an electrocardiogram (ECG). The safe and effective management of LQTS often necessitates a multifaceted approach encompassing pharmacological treatment, lifestyle modifications, and, in high-risk cases, the implantation of implantable cardioverter-defibrillators (ICDs). Beta-blockers, particularly nadolol and propranolol, are foundational in treating LQTS, especially for high-risk patients, though ICDs are recommended for those with a history of cardiac arrest or recurrent arrhythmic episodes. Intermediate and low-risk patients are usually managed with medical therapy and regular monitoring. Lifestyle modifications, such as avoiding strenuous physical activities and certain medications, play a critical role. Additionally, psychological support is essential due to the anxiety and depression associated with LQTS. Left cardiac sympathetic denervation (LCSD) offers an alternative for those intolerant to beta-blockers or ICDs. For diagnosis and management, advancements in artificial intelligence (AI) are proving beneficial, enhancing early detection and risk stratification. Despite these developments, significant gaps in understanding the pathophysiology and optimal management strategies for LQTS remain. Future research should focus on refining risk stratification, developing new therapeutic approaches, and generating robust data to guide treatment decisions, ultimately aiming for a personalized medicine approach.