Displaying all 3 publications

Abstract:
Sort:
  1. Rahaman I, Haque MA, Singh NSS, Jafor MS, Sarkar PK, Rahman MA, et al.
    Micromachines (Basel), 2022 Nov 11;13(11).
    PMID: 36422388 DOI: 10.3390/mi13111959
    In this research, a novel antenna array named Linearly arranged Concentric Circular Antenna Array (LCCAA) is proposed, concerning lower beamwidth, lower sidelobe level, sharp ability to detect false signals, and impressive SINR performance. The performance of the proposed LCCAA beamformer is compared with geometrically identical existing beamformers using the conventional technique where the LCCAA beamformer shows the lowest beamwidth and sidelobe level (SLL) of 12.50° and -15.17 dB with equal elements accordingly. However, the performance is degraded due to look direction error, for which robust techniques, fixed diagonal loading (FDL), optimal diagonal loading (ODL), and variable diagonal loading (VDL), are applied to all the potential arrays to minimize this problem. Furthermore, the LCCAA beamformer is further simulated to reduce the sidelobe applying tapering techniques where the Hamming window shows the best performance having 17.097 dB less sidelobe level compared to the uniform window. The proposed structure is also analyzed under a robust tapered (VDL-Hamming) method which reduces around 69.92 dB and 48.39 dB more sidelobe level compared to conventional and robust techniques. Analyzing all the performances, it is clear that the proposed LCCAA beamformer is superior and provides the best performance with the proposed robust tapered (VDL-Hamming) technique.
  2. Rahman MO, Nor NBM, Sawaran Singh NS, Sikiru S, Dennis JO, Shukur MFBA, et al.
    Nanomaterials (Basel), 2023 Feb 08;13(4).
    PMID: 36839033 DOI: 10.3390/nano13040666
    Graphene and its derivatives have emerged as peerless electrode materials for energy storage applications due to their exclusive electroactive properties such as high chemical stability, wettability, high electrical conductivity, and high specific surface area. However, electrodes from graphene-based composites are still facing some substantial challenges to meet current energy demands. Here, we applied one-pot facile solvothermal synthesis to produce nitrogen-doped reduced graphene oxide (N-rGO) nanoparticles using an organic solvent, ethylene glycol (EG), and introduced its application in supercapacitors. Electrochemical analysis was conducted to assess the performance using a multi-channel electrochemical workstation. The N-rGO-based electrode demonstrates the highest specific capacitance of 420 F g-1 at 1 A g-1 current density in 3 M KOH electrolyte with the value of energy (28.60 Whkg-1) and power (460 Wkg-1) densities. Furthermore, a high capacitance retention of 98.5% after 3000 charge/discharge cycles was recorded at 10 A g-1. This one-pot facile solvothermal synthetic process is expected to be an efficient technique to design electrodes rationally for next-generation supercapacitors.
  3. Yahya MS, Soeung S, Singh NSS, Yunusa Z, Chinda FE, Rahim SKA, et al.
    Sensors (Basel), 2023 Jun 06;23(12).
    PMID: 37420526 DOI: 10.3390/s23125359
    In this study, a novel reconfigurable triple-band monopole antenna for LoRa IoT applications is fabricated on an FR-4 substrate. The proposed antenna is designed to function at three distinct LoRa frequency bands: 433 MHz, 868 MHz, and 915 MHz covering the LoRa bands in Europe, America, and Asia. The antenna is reconfigurable by using a PIN diode switching mechanism, which allows for the selection of the desired operating frequency band based on the state of the diodes. The antenna is designed using CST MWS® software 2019 and optimized for maximum gain, good radiation pattern and efficiency. The antenna with a total dimension of 80 mm × 50 mm × 0.6 mm (0.12λ0×0.07λ0 × 0.001λ0 at 433 MHz) has a gain of 2 dBi, 1.9 dBi, and 1.9 dBi at 433 MHz, 868 MHz, and 915 MHz, respectively, with an omnidirectional H-plane radiation pattern and a radiation efficiency above 90% across the three frequency bands. The fabrication and measurement of the antenna have been carried out, and the results of simulation and measurements are compared. The agreement among the simulation and measurement results confirms the design's accuracy and the antenna's suitability for LoRa IoT applications, particularly in providing a compact, flexible, and energy efficient communication solution for different LoRa frequency bands.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links