Displaying all 11 publications

Abstract:
Sort:
  1. Nilashi M, Abumalloh RA, Alyami S, Alghamdi A, Alrizq M
    Brain Sci, 2023 Mar 24;13(4).
    PMID: 37190508 DOI: 10.3390/brainsci13040543
    Parkinson's disease (PD) is a complex degenerative brain disease that affects nerve cells in the brain responsible for body movement. Machine learning is widely used to track the progression of PD in its early stages by predicting unified Parkinson's disease rating scale (UPDRS) scores. In this paper, we aim to develop a new method for PD diagnosis with the aid of supervised and unsupervised learning techniques. Our method is developed using the Laplacian score, Gaussian process regression (GPR) and self-organizing maps (SOM). SOM is used to segment the data to handle large PD datasets. The models are then constructed using GPR for the prediction of the UPDRS scores. To select the important features in the PD dataset, we use the Laplacian score in the method. We evaluate the developed approach on a PD dataset including a set of speech signals. The method was evaluated through root-mean-square error (RMSE) and adjusted R-squared (adjusted R²). Our findings reveal that the proposed method is efficient in the prediction of UPDRS scores through a set of speech signals (dysphonia measures). The method evaluation showed that SOM combined with the Laplacian score and Gaussian process regression with the exponential kernel provides the best results for R-squared (Motor-UPDRS = 0.9489; Total-UPDRS = 0.9516) and RMSE (Motor-UPDRS = 0.5144; Total-UPDRS = 0.5105) in predicting UPDRS compared with the other kernels in Gaussian process regression.
  2. Rupani PF, Nilashi M, Abumalloh RA, Asadi S, Samad S, Wang S
    Int J Environ Sci Technol (Tehran), 2020;17(11):4655-4666.
    PMID: 32904898 DOI: 10.1007/s13762-020-02910-x
    Coronavirus Disease 2019 (COVID-19) is the official name of a respiratory infectious disease caused by a new coronavirus that started first in Wuhan, China, and outspread worldwide with an unexpectedly fast speed. Flights have been canceled worldwide and transportation has been closed nationwide and across international borders. As a consequence, the economic activity has been stopped and stock markets have been dropped. The COVID-19 lockdown has several social and economic effects. Additionally, COVID-19 has caused several impacts on global migration. On the other hand, such lockdown, along with minimal human mobility, has impacted the natural environment somewhat positively. Overall carbon emissions have dropped, and the COVID-19 lockdown has led to an improvement in air quality and a reduction in water pollution in many cities around the globe. A summary of the existing reports of the environmental impacts of COVID-19 pandemic are discussed and the important findings are presented focusing on several aspects: air pollution, waste management, air quality improvements, waste fires, wildlife, global migration, and sustainability.
  3. Abumalloh RA, Asadi S, Nilashi M, Minaei-Bidgoli B, Nayer FK, Samad S, et al.
    Technol Soc, 2021 Nov;67:101728.
    PMID: 34538984 DOI: 10.1016/j.techsoc.2021.101728
    To avoid the spread of the COVID-19 crisis, many countries worldwide have temporarily shut down their academic organizations. National and international closures affect over 91% of the education community of the world. E-learning is the only effective manner for educational institutions to coordinate the learning process during the global lockdown and quarantine period. Many educational institutions have instructed their students through remote learning technologies to face the effect of local closures and promote the continuity of the education process. This study examines the expected benefits of e-learning during the COVID-19 pandemic by providing a new model to investigate this issue using a survey collected from the students at Imam Abdulrahman Bin Faisal University. Partial Least Squares Structural Equation Modeling (PLS-SEM) was employed on 179 useable responses. This study applied Push-Pull-Mooring theory and examined how push, pull, and mooring variables impact learners to switch to virtual and remote educational laboratories. The Protection Motivation theory was employed to explain how the potential health risk and environmental threat can influence the expected benefits from e-learning services. The findings revealed that the push factor (environmental threat) is significantly related to perceived benefits. The pull factors (e-learning motivation, perceived information sharing, and social distancing) significantly impact learners' benefits. The mooring factor, namely perceived security, significantly impacts learners' benefits.
  4. Nilashi M, Abumalloh RA, Yusuf SYM, Thi HH, Alsulami M, Abosaq H, et al.
    Comput Biol Chem, 2023 Feb;102:107788.
    PMID: 36410240 DOI: 10.1016/j.compbiolchem.2022.107788
    Predicting Unified Parkinson's Disease Rating Scale (UPDRS) in Total- UPDRS and Motor-UPDRS clinical scales is an important part of controlling PD. Computational intelligence approaches have been used effectively in the early diagnosis of PD by predicting UPDRS. In this research, we target to present a combined approach for PD diagnosis using an ensemble learning approach with the ability of online learning from clinical large datasets. The method is developed using Deep Belief Network (DBN) and Neuro-Fuzzy approaches. A clustering approach, Expectation-Maximization (EM), is used to handle large datasets. The Principle Component Analysis (PCA) technique is employed for noise removal from the data. The UPDRS prediction models are constructed for PD diagnosis. To handle the missing data, K-NN is used in the proposed method. We use incremental machine learning approaches to improve the efficiency of the proposed method. We assess our approach on a real-world PD dataset and the findings are assessed compared to other PD diagnosis approaches developed by machine learning techniques. The findings revealed that the approach can improve the UPDRS prediction accuracy and the time complexity of previous methods in handling large datasets.
  5. Abumalloh RA, Nilashi M, Samad S, Ahmadi H, Alghamdi A, Alrizq M, et al.
    Ageing Res Rev, 2024 Apr;96:102285.
    PMID: 38554785 DOI: 10.1016/j.arr.2024.102285
    Parkinson's Disease (PD) is a progressive neurodegenerative illness triggered by decreased dopamine secretion. Deep Learning (DL) has gained substantial attention in PD diagnosis research, with an increase in the number of published papers in this discipline. PD detection using DL has presented more promising outcomes as compared with common machine learning approaches. This article aims to conduct a bibliometric analysis and a literature review focusing on the prominent developments taking place in this area. To achieve the target of the study, we retrieved and analyzed the available research papers in the Scopus database. Following that, we conducted a bibliometric analysis to inspect the structure of keywords, authors, and countries in the surveyed studies by providing visual representations of the bibliometric data using VOSviewer software. The study also provides an in-depth review of the literature focusing on different indicators of PD, deployed approaches, and performance metrics. The outcomes indicate the firm development of PD diagnosis using DL approaches over time and a large diversity of studies worldwide. Additionally, the literature review presented a research gap in DL approaches related to incremental learning, particularly in relation to big data analysis.
  6. Nilashi M, Abumalloh RA, Alghamdi A, Minaei-Bidgoli B, Alsulami AA, Thanoon M, et al.
    Telemat Inform, 2021 Nov;64:101693.
    PMID: 34887617 DOI: 10.1016/j.tele.2021.101693
    The COVID-19 pandemic has caused major global changes both in the areas of healthcare and economics. This pandemic has led, mainly due to conditions related to confinement, to major changes in consumer habits and behaviors. Although there have been several studies on the analysis of customers' satisfaction through survey-based and online customers' reviews, the impact of COVID-19 on customers' satisfaction has not been investigated so far. It is important to investigate dimensions of satisfaction from the online customers' reviews to reveal their preferences on the hotels' services during the COVID-19 outbreak. This study aims to reveal the travelers' satisfaction in Malaysian hotels during the COVID-19 outbreak through online customers' reviews. In addition, this study investigates whether service quality during COVID-19 has an impact on hotel performance criteria and consequently customers' satisfaction. Accordingly, we develop a new method through machine learning approaches. The method is developed using text mining, clustering, and prediction learning techniques. We use Latent Dirichlet Allocation (LDA) for big data analysis to identify the voice-of-the-customer, Expectation-Maximization (EM) for clustering, and ANFIS for satisfaction level prediction. In addition, we use Higher-Order Singular Value Decomposition (HOSVD) for missing value imputation. The data was collected from TripAdvisor regarding the travelers' concerns in the form of online reviews on the COVID-19 outbreak and numerical ratings on hotel services from different perspectives. The results from the analysis of online customers' reviews revealed that service quality during COVID-19 has an impact on hotel performance criteria and consequently customers' satisfaction. In addition, the results showed that although the customers are always seeking hotels with better performance, they are also concerned with the quality of related services in the COVID-19 outbreak.
  7. Nilashi M, Abumalloh RA, Minaei-Bidgoli B, Samad S, Yousoof Ismail M, Alhargan A, et al.
    J Healthc Eng, 2022;2022:2793361.
    PMID: 35154618 DOI: 10.1155/2022/2793361
    Parkinson's disease (PD) is a complex neurodegenerative disease. Accurate diagnosis of this disease in the early stages is crucial for its initial treatment. This paper aims to present a comparative study on the methods developed by machine learning techniques in PD diagnosis. We rely on clustering and prediction learning approaches to perform the comparative study. Specifically, we use different clustering techniques for PD data clustering and support vector regression ensembles to predict Motor-UPDRS and Total-UPDRS. The results are then compared with the other prediction learning approaches, multiple linear regression, neurofuzzy, and support vector regression techniques. The comparative study is performed on a real-world PD dataset. The prediction results of data analysis on a PD real-world dataset revealed that expectation-maximization with the aid of SVR ensembles can provide better prediction accuracy in relation to decision trees, deep belief network, neurofuzzy, and support vector regression combined with other clustering techniques in the prediction of Motor-UPDRS and Total-UPDRS.
  8. Nilashi M, Abumalloh RA, Ahmadi H, Samad S, Alrizq M, Abosaq H, et al.
    Heliyon, 2023 Nov;9(11):e21828.
    PMID: 38034804 DOI: 10.1016/j.heliyon.2023.e21828
    Customer Relationship Management (CRM) is a method of management that aims to establish, develop, and improve relationships with targeted customers in order to maximize corporate profitability and customer value. There have been many CRM systems in the market. These systems are developed based on the combination of business requirements, customer needs, and industry best practices. The impact of CRM systems on the customers' satisfaction and competitive advantages as well as tangible and intangible benefits are widely investigated in the previous studies. However, there is a lack of studies to assess the quality dimensions of these systems to meet an organization's CRM strategy. This study aims to investigate customers' satisfaction with CRM systems through online reviews. We collected 5172 online customers' reviews from 8 CRM systems in the Google play store platform. The satisfaction factors were extracted using Latent Dirichlet Allocation (LDA) and grouped into three dimensions; information quality, system quality, and service quality. Data segmentation is performed using Learning Vector Quantization (LVQ). In addition, feature selection is performed by the entropy-weight approach. We then used the Adaptive Neuro Fuzzy Inference System (ANFIS), the hybrid of fuzzy logic and neural networks, to assess the relationship between these dimensions and customer satisfaction. The results are discussed and research implications are provided.
  9. Zogaan WA, Nilashi M, Ahmadi H, Abumalloh RA, Alrizq M, Abosaq H, et al.
    MethodsX, 2024 Jun;12:102553.
    PMID: 38292319 DOI: 10.1016/j.mex.2024.102553
    Parkinson's Disease (PD) is a common disorder of the central nervous system. The Unified Parkinson's Disease Rating Scale or UPDRS is commonly used to track PD symptom progression because it displays the presence and severity of symptoms. To model the relationship between speech signal properties and UPDRS scores, this study develops a new method using Neuro-Fuzzy (ANFIS) and Optimized Learning Rate Learning Vector Quantization (OLVQ1). ANFIS is developed for different Membership Functions (MFs). The method is evaluated using Parkinson's telemonitoring dataset which includes a total of 5875 voice recordings from 42 individuals in the early stages of PD which comprises 28 men and 14 women. The dataset is comprised of 16 vocal features and Motor-UPDRS, and Total-UPDRS. The method is compared with other learning techniques. The results show that OLVQ1 combined with the ANFIS has provided the best results in predicting Motor-UPDRS and Total-UPDRS. The lowest Root Mean Square Error (RMSE) values (UPDRS (Total)=0.5732; UPDRS (Motor)=0.5645) and highest R-squared values (UPDRS (Total)=0.9876; UPDRS (Motor)=0.9911) are obtained by this method. The results are discussed and directions for future studies are presented.i.ANFIS and OLVQ1 are combined to predict UPDRS.ii.OLVQ1 is used for PD data segmentation.iii.ANFIS is developed for different MFs to predict Motor-UPDRS and Total-UPDRS.
  10. Zibarzani M, Abumalloh RA, Nilashi M, Samad S, Alghamdi OA, Nayer FK, et al.
    Technol Soc, 2022 Aug;70:101977.
    PMID: 36187884 DOI: 10.1016/j.techsoc.2022.101977
    Online reviews have been used effectively to understand customers' satisfaction and preferences. COVID-19 crisis has significantly impacted customers' satisfaction in several sectors such as tourism and hospitality. Although several research studies have been carried out to analyze consumers' satisfaction using survey-based methodologies, consumers' satisfaction has not been well explored in the event of the COVID-19 crisis, especially using available data in social network sites. In this research, we aim to explore consumers' satisfaction and preferences of restaurants' services during the COVID-19 crisis. Furthermore, we investigate the moderating impact of COVID-19 safety precautions on restaurants' quality dimensions and satisfaction. We applied a new approach to achieve the objectives of this research. We first developed a hybrid approach using clustering, supervised learning, and text mining techniques. Learning Vector Quantization (LVQ) was used to cluster customers' preferences. To predict travelers' preferences, decision trees were applied to each segment of LVQ. We used a text mining technique; Latent Dirichlet Allocation (LDA), for textual data analysis to discover the satisfaction criteria from online customers' reviews. After analyzing the data using machine learning techniques, a theoretical model was developed to inspect the relationships between the restaurants' quality factors and customers' satisfaction. In this stage, Partial Least Squares (PLS) technique was employed. We evaluated the proposed approach using a dataset collected from the TripAdvisor platform. The outcomes of the two-stage methodology were discussed and future research directions were suggested according to the limitations of this study.
  11. Abumalloh RA, Nilashi M, Yousoof Ismail M, Alhargan A, Alghamdi A, Alzahrani AO, et al.
    J Infect Public Health, 2022 Jan;15(1):75-93.
    PMID: 34836799 DOI: 10.1016/j.jiph.2021.11.013
    COVID-19 crisis has placed medical systems over the world under unprecedented and growing pressure. Medical imaging processing can help in the diagnosis, treatment, and early detection of diseases. It has been considered as one of the modern technologies applied to fight against the COVID-19 crisis. Although several artificial intelligence, machine learning, and deep learning techniques have been deployed in medical image processing in the context of COVID-19 disease, there is a lack of research considering systematic literature review and categorization of published studies in this field. A systematic review locates, assesses, and interprets research outcomes to address a predetermined research goal to present evidence-based practical and theoretical insights. The main goal of this study is to present a literature review of the deployed methods of medical image processing in the context of the COVID-19 crisis. With this in mind, the studies available in reliable databases were retrieved, studied, evaluated, and synthesized. Based on the in-depth review of literature, this study structured a conceptual map that outlined three multi-layered folds: data gathering and description, main steps of image processing, and evaluation metrics. The main research themes were elaborated in each fold, allowing the authors to recommend upcoming research paths for scholars. The outcomes of this review highlighted that several methods have been adopted to classify the images related to the diagnosis and detection of COVID-19. The adopted methods have presented promising outcomes in terms of accuracy, cost, and detection speed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links