Affiliations 

  • 1 UCSI Graduate Business School, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
  • 2 Department of Computer Science and Engineering, Qatar University, Doha, 2713, Qatar
  • 3 Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK
  • 4 Department of Business Administration, College of Business and Administration, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
  • 5 Information Systems Dept. College of Computer Science and Information Systems Najran University, Najran, Saudi Arabia
  • 6 Computer Science Dept. College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
Heliyon, 2023 Nov;9(11):e21828.
PMID: 38034804 DOI: 10.1016/j.heliyon.2023.e21828

Abstract

Customer Relationship Management (CRM) is a method of management that aims to establish, develop, and improve relationships with targeted customers in order to maximize corporate profitability and customer value. There have been many CRM systems in the market. These systems are developed based on the combination of business requirements, customer needs, and industry best practices. The impact of CRM systems on the customers' satisfaction and competitive advantages as well as tangible and intangible benefits are widely investigated in the previous studies. However, there is a lack of studies to assess the quality dimensions of these systems to meet an organization's CRM strategy. This study aims to investigate customers' satisfaction with CRM systems through online reviews. We collected 5172 online customers' reviews from 8 CRM systems in the Google play store platform. The satisfaction factors were extracted using Latent Dirichlet Allocation (LDA) and grouped into three dimensions; information quality, system quality, and service quality. Data segmentation is performed using Learning Vector Quantization (LVQ). In addition, feature selection is performed by the entropy-weight approach. We then used the Adaptive Neuro Fuzzy Inference System (ANFIS), the hybrid of fuzzy logic and neural networks, to assess the relationship between these dimensions and customer satisfaction. The results are discussed and research implications are provided.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.