Displaying all 7 publications

Abstract:
Sort:
  1. Martis RJ, Acharya UR, Adeli H
    Comput Biol Med, 2014 May;48:133-49.
    PMID: 24681634 DOI: 10.1016/j.compbiomed.2014.02.012
    The Electrocardiogram (ECG) is the P-QRS-T wave depicting the cardiac activity of the heart. The subtle changes in the electric potential patterns of repolarization and depolarization are indicative of the disease afflicting the patient. These clinical time domain features of the ECG waveform can be used in cardiac health diagnosis. Due to the presence of noise and minute morphological parameter values, it is very difficult to identify the ECG classes accurately by the naked eye. Various computer aided cardiac diagnosis (CACD) systems, analysis methods, challenges addressed and the future of cardiovascular disease screening are reviewed in this paper. Methods developed for time domain, frequency transform domain, and time-frequency domain analysis, such as the wavelet transform, cannot by themselves represent the inherent distinguishing features accurately. Hence, nonlinear methods which can capture the small variations in the ECG signal and provide improved accuracy in the presence of noise are discussed in greater detail in this review. A CACD system exploiting these nonlinear features can help clinicians to diagnose cardiovascular disease more accurately.
  2. Acharya UR, Hagiwara Y, Adeli H
    Epilepsy Behav, 2018 11;88:251-261.
    PMID: 30317059 DOI: 10.1016/j.yebeh.2018.09.030
    In the past two decades, significant advances have been made on automated electroencephalogram (EEG)-based diagnosis of epilepsy and seizure detection. A number of innovative algorithms have been introduced that can aid in epilepsy diagnosis with a high degree of accuracy. In recent years, the frontiers of computational epilepsy research have moved to seizure prediction, a more challenging problem. While antiepileptic medication can result in complete seizure freedom in many patients with epilepsy, up to one-third of patients living with epilepsy will have medically intractable epilepsy, where medications reduce seizure frequency but do not completely control seizures. If a seizure can be predicted prior to its clinical manifestation, then there is potential for abortive treatment to be given, either self-administered or via an implanted device administering medication or electrical stimulation. This will have a far-reaching impact on the treatment of epilepsy and patient's quality of life. This paper presents a state-of-the-art review of recent efforts and journal articles on seizure prediction. The technologies developed for epilepsy diagnosis and seizure detection are being adapted and extended for seizure prediction. The paper ends with some novel ideas for seizure prediction using the increasingly ubiquitous machine learning technology, particularly deep neural network machine learning.
  3. Yuvaraj R, Murugappan M, Acharya UR, Adeli H, Ibrahim NM, Mesquita E
    Behav Brain Res, 2016 Feb 1;298(Pt B):248-60.
    PMID: 26515932 DOI: 10.1016/j.bbr.2015.10.036
    Successful emotional communication is crucial for social interactions and social relationships. Parkinson's Disease (PD) patients have shown deficits in emotional recognition abilities although the research findings are inconclusive. This paper presents an investigation of six emotions (happiness, sadness, fear, anger, surprise, and disgust) of twenty non-demented (Mini-Mental State Examination score >24) PD patients and twenty Healthy Controls (HCs) using Electroencephalogram (EEG)-based Brain Functional Connectivity (BFC) patterns. The functional connectivity index feature in EEG signals is computed using three different methods: Correlation (COR), Coherence (COH), and Phase Synchronization Index (PSI). Further, a new functional connectivity index feature is proposed using bispectral analysis. The experimental results indicate that the BFC change is significantly different among emotional states of PD patients compared with HC. Also, the emotional connectivity pattern classified using Support Vector Machine (SVM) classifier yielded the highest accuracy for the new bispectral functional connectivity index. The PD patients showed emotional impairments as demonstrated by a poor classification performance. This finding suggests that decrease in the functional connectivity indices during emotional stimulation in PD, indicating functional disconnections between cortical areas.
  4. Bhat S, Acharya UR, Hagiwara Y, Dadmehr N, Adeli H
    Comput Biol Med, 2018 11 01;102:234-241.
    PMID: 30253869 DOI: 10.1016/j.compbiomed.2018.09.008
    Parkinson's disease (PD) is a neurodegenerative disease of the central nervous system caused due to the loss of dopaminergic neurons. It is classified under movement disorder as patients with PD present with tremor, rigidity, postural changes, and a decrease in spontaneous movements. Comorbidities including anxiety, depression, fatigue, and sleep disorders are observed prior to the diagnosis of PD. Gene mutations, exposure to toxic substances, and aging are considered as the causative factors of PD even though its genesis is unknown. This paper reviews PD etiologies, progression, and in particular measurable indicators of PD such as neuroimaging and electrophysiology modalities. In addition to gene therapy, neuroprotective, pharmacological, and neural transplantation treatments, researchers are actively aiming at identifying biological markers of PD with the goal of early diagnosis. Neuroimaging modalities used together with advanced machine learning techniques offer a promising path for the early detection and intervention in PD patients.
  5. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP
    Comput Methods Programs Biomed, 2018 Jul;161:103-113.
    PMID: 29852953 DOI: 10.1016/j.cmpb.2018.04.012
    In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI).
  6. Acharya UR, Bhat S, Koh JEW, Bhandary SV, Adeli H
    Comput Biol Med, 2017 Sep 01;88:72-83.
    PMID: 28700902 DOI: 10.1016/j.compbiomed.2017.06.022
    Glaucoma is an optic neuropathy defined by characteristic damage to the optic nerve and accompanying visual field deficits. Early diagnosis and treatment are critical to prevent irreversible vision loss and ultimate blindness. Current techniques for computer-aided analysis of the optic nerve and retinal nerve fiber layer (RNFL) are expensive and require keen interpretation by trained specialists. Hence, an automated system is highly desirable for a cost-effective and accurate screening for the diagnosis of glaucoma. This paper presents a new methodology and a computerized diagnostic system. Adaptive histogram equalization is used to convert color images to grayscale images followed by convolution of these images with Leung-Malik (LM), Schmid (S), and maximum response (MR4 and MR8) filter banks. The basic microstructures in typical images are called textons. The convolution process produces textons. Local configuration pattern (LCP) features are extracted from these textons. The significant features are selected using a sequential floating forward search (SFFS) method and ranked using the statistical t-test. Finally, various classifiers are used for classification of images into normal and glaucomatous classes. A high classification accuracy of 95.8% is achieved using six features obtained from the LM filter bank and the k-nearest neighbor (kNN) classifier. A glaucoma integrative index (GRI) is also formulated to obtain a reliable and effective system.
  7. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H
    Comput Biol Med, 2018 09 01;100:270-278.
    PMID: 28974302 DOI: 10.1016/j.compbiomed.2017.09.017
    An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links