Affiliations 

  • 1 Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Malaysia
  • 2 Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
  • 3 Department of Neuroscience, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, United States; Department of Neurology, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, United States; Department of Biomedical Informatics, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, United States. Electronic address: adeli.1@osu.edu
Epilepsy Behav, 2018 11;88:251-261.
PMID: 30317059 DOI: 10.1016/j.yebeh.2018.09.030

Abstract

In the past two decades, significant advances have been made on automated electroencephalogram (EEG)-based diagnosis of epilepsy and seizure detection. A number of innovative algorithms have been introduced that can aid in epilepsy diagnosis with a high degree of accuracy. In recent years, the frontiers of computational epilepsy research have moved to seizure prediction, a more challenging problem. While antiepileptic medication can result in complete seizure freedom in many patients with epilepsy, up to one-third of patients living with epilepsy will have medically intractable epilepsy, where medications reduce seizure frequency but do not completely control seizures. If a seizure can be predicted prior to its clinical manifestation, then there is potential for abortive treatment to be given, either self-administered or via an implanted device administering medication or electrical stimulation. This will have a far-reaching impact on the treatment of epilepsy and patient's quality of life. This paper presents a state-of-the-art review of recent efforts and journal articles on seizure prediction. The technologies developed for epilepsy diagnosis and seizure detection are being adapted and extended for seizure prediction. The paper ends with some novel ideas for seizure prediction using the increasingly ubiquitous machine learning technology, particularly deep neural network machine learning.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.