Displaying all 4 publications

Abstract:
Sort:
  1. Ali SS, Moinuddin M, Raza K, Adil SH
    ScientificWorldJournal, 2014;2014:850189.
    PMID: 24987745 DOI: 10.1155/2014/850189
    Radial basis function neural networks are used in a variety of applications such as pattern recognition, nonlinear identification, control and time series prediction. In this paper, the learning algorithm of radial basis function neural networks is analyzed in a feedback structure. The robustness of the learning algorithm is discussed in the presence of uncertainties that might be due to noisy perturbations at the input or to modeling mismatch. An intelligent adaptation rule is developed for the learning rate of RBFNN which gives faster convergence via an estimate of error energy while giving guarantee to the l 2 stability governed by the upper bounding via small gain theorem. Simulation results are presented to support our theoretical development.
  2. Ebrahim M, Chia WC, Adil SH, Raza K
    Sensors (Basel), 2019 May 19;19(10).
    PMID: 31109154 DOI: 10.3390/s19102309
    Devices in a visual sensor network (VSN) are mostly powered by batteries, and in such a network, energy consumption and bandwidth utilization are the most critical issues that need to be taken into consideration. The most suitable solution to such issues is to compress the captured visual data before transmission takes place. Compressive sensing (CS) has emerged as an efficient sampling mechanism for VSN. CS reduces the total amount of data to be processed such that it recreates the signal by using only fewer sampling values than that of the Nyquist rate. However, there are few open issues related to the reconstruction quality and practical implementation of CS. The current studies of CS are more concentrated on hypothetical characteristics with simulated results, rather than on the understanding the potential issues in the practical implementation of CS and its computational validation. In this paper, a low power, low cost, visual sensor platform is developed using an Arduino Due microcontroller board, XBee transmitter, and uCAM-II camera. Block compressive sensing (BCS) is implemented on the developed platform to validate the characteristics of compressive sensing in a real-world scenario. The reconstruction is performed by using the joint multi-phase decoding (JMD) framework. To the best of our knowledge, no such practical implementation using off the shelf components has yet been conducted for CS.
  3. Al-Quraishi MS, Elamvazuthi I, Tang TB, Al-Qurishi M, Adil SH, Ebrahim M
    Brain Sci, 2021 May 27;11(6).
    PMID: 34071982 DOI: 10.3390/brainsci11060713
    Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have temporal and spatial characteristics that may complement each other and, therefore, pose an intriguing approach for brain-computer interaction (BCI). In this work, the relationship between the hemodynamic response and brain oscillation activity was investigated using the concurrent recording of fNIRS and EEG during ankle joint movements. Twenty subjects participated in this experiment. The EEG was recorded using 20 electrodes and hemodynamic responses were recorded using 32 optodes positioned over the motor cortex areas. The event-related desynchronization (ERD) feature was extracted from the EEG signal in the alpha band (8-11) Hz, and the concentration change of the oxy-hemoglobin (oxyHb) was evaluated from the hemodynamics response. During the motor execution of the ankle joint movements, a decrease in the alpha (8-11) Hz amplitude (desynchronization) was found to be correlated with an increase of the oxyHb (r = -0.64061, p < 0.00001) observed on the Cz electrode and the average of the fNIRS channels (ch28, ch25, ch32, ch35) close to the foot area representation. Then, the correlated channels in both modalities were used for ankle joint movement classification. The result demonstrates that the integrated modality based on the correlated channels provides a substantial enhancement in ankle joint classification accuracy of 93.01 ± 5.60% (p < 0.01) compared with single modality. These results highlight the potential of the bimodal fNIR-EEG approach for the development of future BCI for lower limb rehabilitation.
  4. Naqvi SF, Ali SSA, Yahya N, Yasin MA, Hafeez Y, Subhani AR, et al.
    Sensors (Basel), 2020 Aug 07;20(16).
    PMID: 32784531 DOI: 10.3390/s20164400
    Mental stress has been identified as a significant cause of several bodily disorders, such as depression, hypertension, neural and cardiovascular abnormalities. Conventional stress assessment methods are highly subjective and tedious and tend to lack accuracy. Machine-learning (ML)-based computer-aided diagnosis systems can be used to assess the mental state with reasonable accuracy, but they require offline processing and feature extraction, rendering them unsuitable for real-time applications. This paper presents a real-time mental stress assessment approach based on convolutional neural networks (CNNs). The CNN-based approach afforded real-time mental stress assessment with an accuracy as high as 96%, the sensitivity of 95%, and specificity of 97%. The proposed approach is compared with state-of-the-art ML techniques in terms of accuracy, time utilisation, and quality of features.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links